Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 471: 134386, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38663297

RESUMO

Anthracene, a polycyclic aromatic hydrocarbon (PAH), is a widespread environmental pollutant that poses potential risks to human health. Exposure to anthracene can result in various adverse health effects, including skin-related disorders. Photo exposure sufficiently removes the anthracene from the environment but also generates more degradation products which can be more toxic. The goal of this study was to assess the change in anthracene dermotoxicity caused by photodegradation and understand the mechanism of this change. In the present study, over 99.99% of anthracene was degraded within 24 h of sunlight exposure, while producing many intermediate products including 9,10-anthraquinone and phthalic acid. The anthracene products with different durations of photo exposure were applied to 2D and 3D human keratinocyte cultures. Although the non-degraded anthracene significantly delayed the cell migration, the cell viability and differentiation decreased dramatically in the presence of the photodegraded anthracene. Anthracene photodegradation products also altered the expression patterns of a number of inflammation-related genes in comparison to the control cells. Among these genes, il1a, il1b, il8, cxcl2, s100a9, and mmp1 were upregulated whereas the tlr4 and mmp3 were downregulated by the photodegraded anthracene. Topical deliveries of the photodegraded and non-degraded anthracene to the dorsal skin of hairless mice showed more toxic effects by the photodegraded anthracene. The 4-hour photodegradation products of anthracene thickened the epidermal layer, increased the dermal cellularity, and induced the upregulation of inflammatory markers, il1a, il1b, s100a9, and mmp1. In addition, it also prevented the production of a gap junction protein, Connexin-43. All the evidence suggested that photodegradation enhanced the toxicities of anthracene to the skin. The 4-hour photodegradation products of anthracene led to clinical signs similar to acute inflammatory skin diseases, such as atopic and contact dermatitis, eczema, and psoriasis. Therefore, the potential risk of skin irritation by anthracene should be also considered when an individual is exposed to PAHs, especially in environments with strong sunlight.


Assuntos
Antracenos , Queratinócitos , Fotólise , Pele , Antracenos/toxicidade , Antracenos/química , Humanos , Queratinócitos/efeitos dos fármacos , Queratinócitos/efeitos da radiação , Animais , Pele/efeitos dos fármacos , Pele/efeitos da radiação , Pele/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Camundongos , Movimento Celular/efeitos dos fármacos , Luz Solar , Camundongos Pelados , Antraquinonas/toxicidade , Antraquinonas/química , Diferenciação Celular/efeitos dos fármacos
2.
Part Fibre Toxicol ; 21(1): 22, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38685063

RESUMO

Plastic accumulation in the environment is rapidly increasing, and nanoplastics (NP), byproducts of environmental weathering of bulk plastic waste, pose a significant public health risk. Particles may enter the human body through many possible routes such as ingestion, inhalation, and skin absorption. However, studies on NP penetration and accumulation in human skin are limited. Loss or reduction of the keratinized skin barrier may enhance the skin penetration of NPs. The present study investigated the entry of NPs into a human skin system modeling skin with compromised barrier functions and cellular responses to the intracellular accumulations of NPs. Two in vitro models were employed to simulate human skin lacking keratinized barriers. The first model was an ex vivo human skin culture with the keratinized dermal layer (stratum corneum) removed. The second model was a 3D keratinocyte/dermal fibroblast cell co-culture model with stratified keratinocytes on the top and a monolayer of skin fibroblast cells co-cultured at the bottom. The penetration and accumulation of the NPs in different cell types were observed using fluorescent microscopy, confocal microscopy, and cryogenic electron microscopy (cryo-EM). The cellular responses of keratinocytes and dermal fibroblast cells to stress induced by NPs stress were measured. The genetic regulatory pathway of keratinocytes to the intracellular NPs was identified using transcript analyses and KEGG pathway analysis. The cellular uptake of NPs by skin cells was confirmed by imaging analyses. Transepidermal transport and penetration of NPs through the skin epidermis were observed. According to the gene expression and pathway analyses, an IL-17 signaling pathway was identified as the trigger for cellular responses to internal NP accumulation in the keratinocytes. The transepidermal NPs were also found in co-cultured dermal fibroblast cells and resulted in a large-scale transition from fibroblast cells to myofibroblast cells with enhanced production of α-smooth muscle actin and pro-Collagen Ia. The upregulation of inflammatory factors and cell activation may result in skin inflammation and ultimately trigger immune responses.


Assuntos
Técnicas de Cocultura , Fibroblastos , Queratinócitos , Nanopartículas , Queratinócitos/metabolismo , Queratinócitos/efeitos dos fármacos , Humanos , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Nanopartículas/toxicidade , Absorção Cutânea , Pele/metabolismo , Microplásticos/toxicidade , Células Cultivadas , Tamanho da Partícula
3.
Heliyon ; 10(3): e25378, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38322934

RESUMO

Nanomaterials are known to exhibit unique interactions with light. Iron oxide nanoparticles (IONPs), composed of magnetite (black iron oxide) specifically, are known to be highly absorptive throughout the visible portion of the spectrum. We sought to investigate and overcome optical interference of IONPs in colorimetric, fluorometric and luminescence assays by introducing additional controls and determining the concentration-dependent contribution to optical artifacts which could confound, skew, or invalidate results. We tested the in vitro cytotoxicity of ∼8 nm spherical magnetite nanoparticles capped with alginate on a human lung carcinoma (A549) cell line for different exposure periods and at various concentrations. We observed significant interference with both the MTT reagent and the absorption at 590 nm, a concentration-dependent reduction in the luminescence, fluorescence at ∼490 nm (viability marker), and fluorescence at 530 nm (cytotoxicity marker). After introducing an additional correction, we obtained more accurate results, including a clear decrease in viability at 12-h post-treatment, with apparent near complete recovery after 24-h in addition to a dose-independent, time-dependent alteration in the cell proliferation rate. A small increase in cytotoxicity was noted at the 24-h timepoint at the two highest concentrations. According to our results, the MTT reagents appear to interact substantially with IONPs at concentrations above 0.1 mg/mL, therefore, this assay is not recommended for IONP cytotoxicity assessment at higher concentrations.

4.
Sci Adv ; 10(4): eadh1675, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38277449

RESUMO

Millions of tons of plastics enter the oceans yearly, and they can be fragmented by ultraviolet and mechanical means into nanoplastics. Here, we report the direct observation of nanoplastics in global ocean water leveraging a unique shrinking surface bubble deposition (SSBD) technique. SSBD involves optically heating plasmonic nanoparticles to form a surface bubble and leveraging the Marangoni flow to concentrate suspended nanoplastics onto the surface, allowing direct visualization using electron microscopy. With the plasmonic nanoparticles co-deposited in SSBD, the surface-enhanced Raman spectroscopy effect is enabled for direct chemical identification of trace amounts of nanoplastics. In the water samples from two oceans, we observed nanoplastics made of nylon, polystyrene, and polyethylene terephthalate-all common in daily consumables. The plastic particles have diverse morphologies, such as nanofibers, nanoflakes, and ball-stick nanostructures. These nanoplastics may profoundly affect marine organisms, and our results can provide critical information for appropriately designing their toxicity studies.

5.
Water Res ; 249: 120944, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38070346

RESUMO

Human exposure to micro- and nanoplastics (MNPs) commonly occurs through the consumption of contaminated drinking water. Among these, polystyrene (PS) is well-characterized and is one of the most abundant MNPs, accounting for 10 % of total plastics. Previous studies have focused on carbonaceous materials to remove MNPs by filtration, but most of the work has involved microplastics since nanoplastics (NPs) are smaller in size and more difficult to measure and remove. To address this need, green-engineered chlorophyll-amended sodium and calcium montmorillonites (SMCH and CMCH) were tested for their ability to bind and detoxify parent and fluorescently labeled PSNP using in vitro, in silico, and in vivo assays. In vitro dosimetry, isothermal analyses, thermodynamics, and adsorption/desorption kinetic models demonstrated 1) high binding capacities (173-190 g/kg), 2) high affinities (103), and 3) chemisorption as suggested by low desorption (≤42 %) and high Gibbs free energy and enthalpy (>|-20| kJ/mol) in the Langmuir and pseudo-second-order models. Computational dynamics simulations for 30 and 40 monomeric units of PSNP depicted that chlorophyll amendments increased the binding percentage and contributed to the sustained binding. Also, 64 % of PSNP bind to both the head and tail of chlorophyll aggregates, rather than the head or tail only. Fluorescent PSNP at 100 nm and 30 nm that were exposed to Hydra vulgaris showed concentration-dependent toxicity at 20-100 µg/mL. Importantly, the inclusion of 0.05-0.3 % CMCH and SMCH significantly (p ≤ 0.01) and dose-dependently reduced PSNP toxicity in morphological changes and feeding rate. The bioassay validated the in vitro and in silico predictions about adsorption efficacy and mechanisms and suggested that CMCH and SMCH are efficacious binders for PSNP in water.


Assuntos
Poliestirenos , Poluentes Químicos da Água , Humanos , Argila/química , Água/química , Plásticos , Microplásticos , Adsorção , Clorofila/análise , Poluentes Químicos da Água/análise
6.
Chemosphere ; 341: 140069, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37673181

RESUMO

Plastic pollution continues to erupt as a global ecological concern. As plastic debris is degraded into nanoscale and microscale particles via biodegradation, UV-irradiation, and mechanical processes, nanoplastic pollution arises as a threat to virtually every biological and ecological system on the planet. In this study, zebrafish (Danio rerio) embryos were exposed to fluorescently labeled plastic particles at nanoscales (30 nm and 100 nm). The uptake of both the nanoplastic particles (NPs) was found to exponentially increase with incubation time. Penetration of NPs through the natural barrier of the zebrafish embryos, the chorion, was observed prior to the hatching of the embryo. As a result, the NPs were found to accumulate on the body surface as well as inside the body of the zebrafish. The invasion of NPs into zebrafish embryos induced the upregulation of several stress and immune response genes including interleukins (il6 and il1b), cytochrome P450 (cyp1a and cyp51), and reactive oxygen species (ROS) removal protein-encoding genes (sod and cat). This suggested the initiation of ROS generation and removal as well as the activation of the immune response of zebrafish embryos. Colocalization of macrophages and NPs in zebrafish embryos indicated the involvement of macrophage response to the NP invasion at the early developmental stage of zebrafish.


Assuntos
Microplásticos , Peixe-Zebra , Animais , Espécies Reativas de Oxigênio , Macrófagos , Biodegradação Ambiental
7.
Future Microbiol ; 2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36475828

RESUMO

Aims: Numerous beneficial effects of vitamin C (ascorbic acid) supplementation have been reported in the literature. However, data on its effects toward the gut microbiome are limited. We assessed the effect of vitamin C supplementation on the abundance of beneficial bacterial species in the gut microbiome. Materials and methods: Stool samples were analyzed for relative abundance of gut microbiome bacteria using next-generation sequencing-based profiling and metagenomic shotgun analysis. Results: Supplementation with vitamin C increased the abundance of bacteria of the genus Bifidobacterium (p = 0.0001) and affected various species. Conclusion: The beneficial effects of vitamin C supplementation may be attributed to modulation of the gut microbiome and the consequent health benefits thereof.


Vitamin C, also known as ascorbic acid, is used as a supplement for fighting infectious disorders. Many disorders, including COVID-19 and cancer, harmfully disrupt the levels of bacteria that naturally reside in the gut, which may contribute to symptoms. The aim of the study was to understand whether high-dose vitamin C could improve the types of bacteria in the human gut. To do this we characterized the gut bacteria before and after 23 individuals took vitamin C, as prescribed by their respective physicians. We observed that vitamin C increased levels of a gut bacterium called Bifidobacterium which has positive health benefits, including fighting infection. This study suggests the possibility that vitamin C could be successful for improving infection outcomes, possibly even COVID-19, partially because it improves the gut bacteria present.

8.
MRS Adv ; 7(16-17): 333-336, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-36147310

RESUMO

Nanoparticles (NPs) that can be optically tracked are of interest for cell and organismal biodistribution studies. However, dyes or fluorophores crosslinked or adsorbed onto NP surfaces may detach or leach, resulting in optical artifacts. NP surfaces altered to carry dyes or fluorophores are also anticipated to affect toxicity profiles, protein interactions, and cell uptake. Zinc oxide (ZnO) NPs provide a potential solution. We have produced ZnO nanoparticles with different morphologies and defect emissions in the visible range using sol-gel chemistry. Several of the nanocomposites produced have a wide visible band emission. ZnO semiconductor nanocomposites have broad applications in many fields. They may be dispersed in polymers, functionalized for cell targeting, conjugated to drugs or proteins. We report a unique 600 nm emission peak, which is of interest for nano-bio interaction studies currently limited by autofluorescence in biologicals and the spectral overlap of common fluorescent dyes and proteins.

9.
Nanomaterials (Basel) ; 12(14)2022 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-35889573

RESUMO

Nanoplastic pollution is increasing worldwide and poses a threat to humans, animals, and ecological systems. High-throughput, reliable methods for the isolation and separation of NMPs from drinking water, wastewater, or environmental bodies of water are of interest. We investigated iron oxide nanoparticles (IONPs) with hydrophobic coatings to magnetize plastic particulate waste for removal. We produced and tested IONPs synthesized using air-free conditions and in atmospheric air, coated with several polydimethylsiloxane (PDMS)-based hydrophobic coatings. Particles were characterized with scanning electron microscopy (SEM), transmission electron microscopy (TEM), superconducting quantum interference device (SQUID) magnetometry, dynamic light scattering (DLS), X-ray diffraction (XRD) and zeta potential. The IONPs synthesized in air contained a higher percentage of the magnetic spinel phase and stronger magnetization. Binding and recovery of NMPs from both salt and freshwater samples was demonstrated. Specifically, we were able to remove 100% of particles in a range of sizes, from 2-5 mm, and nearly 90% of nanoplastic particles with a size range from 100 nm to 1000 nm using a simple 2-inch permanent NdFeB magnet. Magnetization of NMPs using IONPs is a viable method for separation from water samples for quantification, characterization, and purification and remediation of water.

10.
Environ Pollut ; 292(Pt B): 118442, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34748888

RESUMO

In response to the growing worldwide plastic pollution problem, the field of nanoplastics research is attempting to determine the risk of exposure to nanoparticles amidst their ever-increasing presence in the environment. Since little is known about the attributes of environmental nanoplastics (concentration, composition, morphology, and size) due to fundamental limitations in detection and quantification of smaller plastic particles, researchers often improvise by engineering nanoplastic particles with various surface modifications as models for laboratory toxicological testing. Polystyrene and other commercially available or easily synthesized polymer materials functionalized with surfactants or fluorophores are typically used for these studies. How surfactants, additives, fluorophores, the addition of surface functional groups for conjugation, or other changes to surface attributes alter toxicological profiles remains unclear. Additionally, the limited polymers used in laboratory models do not mimic the vast range of polymer types comprising environmental pollutants. Nanomaterials are tricky materials to investigate due to their high surface area, high surface energies, and their propensity to interact with molecules, proteins, and biological probes. These unique properties can often invalidate common laboratory assays. Extreme care must be taken to ensure that results are not artefactual. We have gathered zeta potential values for various polystyrene nanoparticles with different functionalization, in different solvents, from the reported literature. We also discuss the effects of surface engineering and solvent properties on interparticle interactions, agglomeration, particle-protein interactions, corona formation, nano-bio interfaces, and contemplate how these parameters might confound results. Various toxicological exemplars are critically reviewed, and the relevance and shortfalls of the most popular models used in nanoplastics toxicity studies published in the current literature are considered.


Assuntos
Nanopartículas , Nanoestruturas , Poluentes Químicos da Água , Microplásticos , Nanopartículas/toxicidade , Plásticos/toxicidade , Poliestirenos , Poluentes Químicos da Água/análise
11.
Front Physiol ; 12: 734463, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34566698

RESUMO

In the past decade, the Deepwater Horizon oil spill triggered a spike in investigatory effort on the effects of crude oil chemicals, most notably polycyclic aromatic hydrocarbons (PAHs), on marine organisms and ecosystems. Oysters, susceptible to both waterborne and sediment-bound contaminants due to their filter-feeding and sessile nature, have become of great interest among scientists as both a bioindicator and model organism for research on environmental stressors. It has been shown in many parts of the world that PAHs readily bioaccumulate in the soft tissues of oysters. Subsequent experiments have highlighted the negative effects associated with exposure to PAHs including the upregulation of antioxidant and detoxifying gene transcripts and enzyme activities such as Superoxide dismutase, Cytochrome P450 enzymes, and Glutathione S-transferase, reduction in DNA integrity, increased infection prevalence, and reduced and abnormal larval growth. Much of these effects could be attributed to either oxidative damage, or a reallocation of energy away from critical biological processes such as reproduction and calcification toward health maintenance. Additional abiotic stressors including increased temperature, reduced salinity, and reduced pH may change how the oyster responds to environmental contaminants and may compound the negative effects of PAH exposure. The negative effects of acidification and longer-term salinity changes appear to add onto that of PAH toxicity, while shorter-term salinity changes may induce mechanisms that reduce PAH exposure. Elevated temperatures, on the other hand, cause such large physiological effects on their own that additional PAH exposure either fails to cause any significant effects or that the effects have little discernable pattern. In this review, the oyster is recognized as a model organism for the study of negative anthropogenic impacts on the environment, and the effects of various environmental stressors on the oyster model are compared, while synergistic effects of these stressors to PAH exposure are considered. Lastly, the understudied effects of PAH photo-toxicity on oysters reveals drastic increases to the toxicity of PAHs via photooxidation and the formation of quinones. The consequences of the interaction between local and global environmental stressors thus provide a glimpse into the differential response to anthropogenic impacts across regions of the world.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...