Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Pathog ; 20(1): e1011935, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38198491

RESUMO

The body temperature of mosquitoes, like most insects, is dictated by the environmental temperature. Climate change is increasing the body temperature of insects and thereby altering physiological processes such as immune proficiency. Aging also alters insect physiology, resulting in the weakening of the immune system in a process called senescence. Although both temperature and aging independently affect the immune system, it is unknown whether temperature alters the rate of immune senescence. Here, we evaluated the independent and combined effects of temperature (27°C, 30°C and 32°C) and aging (1, 5, 10 and 15 days old) on the melanization immune response of the adult female mosquito, Anopheles gambiae. Using a spectrophotometric assay that measures phenoloxidase activity (a rate limiting enzyme) in hemolymph, and therefore, the melanization potential of the mosquito, we discovered that the strength of melanization decreases with higher temperature, aging, and infection. Moreover, when the temperature is higher, the aging-dependent decline in melanization begins at a younger age. Using an optical assay that measures melanin deposition on the abdominal wall and in the periostial regions of the heart, we found that melanin is deposited after infection, that this deposition decreases with aging, and that this aging-dependent decline is accelerated by higher temperature. This study demonstrates that higher temperature accelerates immune senescence in mosquitoes, with higher temperature uncoupling physiological age from chronological age. These findings highlight the importance of investigating the consequences of climate change on how disease transmission by mosquitoes is affected by aging.


Assuntos
Anopheles , Melaninas , Animais , Feminino , Temperatura , Imunidade , Temperatura Alta
2.
Parasit Vectors ; 16(1): 412, 2023 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-37951916

RESUMO

BACKGROUND: Larvicides are critical for the control of mosquito-borne diseases. However, even sublethal exposure to a larvicide can alter development and life history traits, which can then affect population density and disease transmission dynamics. Photosensitive insecticides (PSIs) are a promising class of larvicide that are toxic when ingested and activated by light. We investigated whether the time of day when exposure occurs, or the process of pupation, affects larval susceptibility to PSI phototoxicity in the mosquito Anopheles gambiae, and whether sublethal exposure to PSIs alters life history traits. METHODS: Larvae were treated with lethal concentrations of the PSIs methylene blue (MB) and rose bengal (RB), and larval survival was measured at various times of day. Additionally, larvae were exposed to two concentrations of each PSI that resulted in low and medium mortality, and the life history traits of the surviving larvae were measured. RESULTS: Pupation, which predominantly occurs in the evening, protected larvae from PSI toxicity, but the toxicity of PSIs against larvae that had yet to pupate was unaffected by time of day. Larval exposure to a sublethal concentration of MB, but not RB, shortened the time to pupation. However, larval exposure to a sublethal concentration of RB, but not MB, increased pupal mortality. Neither PSI had a meaningful effect on the time to eclosion, adult longevity, or adult melanization potential. CONCLUSIONS: PSIs are lethal larvicides. Sublethal PSI exposure alters mosquito development, but does not affect adult life history traits.


Assuntos
Anopheles , Inseticidas , Características de História de Vida , Animais , Inseticidas/toxicidade , Larva , Longevidade , Mosquitos Vetores , Controle de Mosquitos/métodos
3.
J Vis Exp ; (199)2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37782092

RESUMO

Transgenic mosquitoes often display fitness costs compared to their wild-type counterparts. In this regard, fitness cost studies involve collecting life parameter data from genetically modified mosquitoes and comparing them to mosquitoes lacking transgenes from the same genetic background. This manuscript illustrates how to measure common life history traits in the mosquito Aedes aegypti, including fecundity, wing size and shape, fertility, sex ratio, viability, development times, male contribution, and adult longevity. These parameters were chosen because they reflect reproductive success, are simple to measure, and are commonly reported in the literature. The representative results quantify fitness costs associated with either a gene knock-out or a single insertion of a gene drive element. Standardizing how life parameter data are collected is important because such data may be used to compare the health of transgenic mosquitoes generated across studies or to model the transgene fixation rate in a simulated wild-type mosquito population. Although this protocol is specific for transgenic Aedes aegypti, the protocol may also be used for other mosquito species or other experimental treatment conditions, with the caveat that certain biological contexts may require special adaptations.


Assuntos
Aedes , Animais , Masculino , Aedes/genética , Animais Geneticamente Modificados , Fertilidade , Reprodução , Transgenes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...