Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Oncotarget ; 8(32): 52381-52402, 2017 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-28881737

RESUMO

Survival rate for pancreatic cancer (pancreatic ductal adenocarcinoma, PDAC) is poor, with about 80% of patients presenting with the metastatic disease. Gemcitabine, the standard chemotherapeutic agent for locally advanced and metastatic PDAC has limited efficacy, attributed to innate/acquired resistance and activation of pro-survival pathways. The Mnk1/2-eIF4E and NF-κB signaling pathways are implicated in PDAC disease progression/metastasis and also associated with gemcitabine-induced resistance in PDAC. Galeterone (gal), a multi-target, agent in phase III clinical development for prostate cancer has also shown effects on the aforementioned pathways. We show for the first time, that gal/analogs (VNPT55, VNPP414 and VNPP433-3ß) profoundly inhibited cell viability of gemcitabine-naive/resistance PDAC cell lines and strongly synergized with gemcitabine in gemcitabine-resistant PDAC cells. In addition, to inducing G1 cell cycle arrest, gal/analogs induced caspase 3-mediated cell-death of PDAC cells. Gal/analogs caused profound downregulation of Mnk1/2, peIF4E and NF-κB (p-p65), metastatic inducing factors (N-cadherin, MMP-1/-2/-9, Slug, Snail and CXCR4) and putative stem cell factors, (ß-Catenin, Nanog, BMI-1 and Oct-4). Gal/analog also depleted EZH2 and upregulated E-Cadherin. These effects resulted in significant inhibition of PDAC cell migration, invasion and proliferation. Importantly, we also observed strong MiaPaca-2 tumor xenograft growth inhibition (61% to 92%). Collectively, these promising findings strongly support further development of gal/analogs as novel therapeutics for PDAC.

2.
ACS Med Chem Lett ; 7(7): 708-13, 2016 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-27437082

RESUMO

Degradation of all forms of androgen receptors (ARs) is emerging as an advantageous therapeutic paradigm for the effective treatment of prostate cancer. In continuation of our program to identify and develop improved efficacious novel small-molecule agents designed to disrupt AR signaling through enhanced AR degradation, we have designed, synthesized, and evaluated novel C-3 modified analogues of our phase 3 clinical agent, galeterone (5). Concerns of potential in vivo stability of our recently discovered more efficacious galeterone 3ß-imidazole carbamate (6) led to the design and synthesis of new steroidal compounds. Two of the 11 compounds, 3ß-pyridyl ether (8) and 3ß-imidazole (17) with antiproliferative GI50 values of 3.24 and 2.54 µM against CWR22Rv1 prostate cancer cell, are 2.75- and 3.5-fold superior to 5. In addition, compounds 8 and 17 possess improved (∼4-fold) AR-V7 degrading activities. Importantly, these two compounds are expected to be metabolically stable, making them suitable for further development as new therapeutics against all forms of prostate cancer.

3.
J Med Chem ; 58(4): 1900-14, 2015 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-25634130

RESUMO

The synthesis and in vitro and in vivo antibreast and antiprostate cancers activities of novel C-4 heteroaryl 13-cis-retinamides that modulate Mnk-eIF4E and AR signaling are discussed. Modifications of the C-4 heteroaryl substituents reveal that the 1H-imidazole is essential for high anticancer activity. The most potent compounds against a variety of human breast and prostate cancer (BC/PC) cell lines were compounds 16 (VNHM-1-66), 20 (VNHM-1-81), and 22 (VNHM-1-73). In these cell lines, the compounds induce Mnk1/2 degradation to substantially suppress eIF4E phosphorylation. In PC cells, the compounds induce degradation of both full-length androgen receptor (fAR) and splice variant AR (AR-V7) to inhibit AR transcriptional activity. More importantly, VNHM-1-81 has strong in vivo antibreast and antiprostate cancer activities, while VNHM-1-73 exhibited strong in vivo antibreast cancer activity, with no apparent host toxicity. Clearly, these lead compounds are strong candidates for development for the treatments of human breast and prostate cancers.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias da Próstata/tratamento farmacológico , Tretinoína/análogos & derivados , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Fator de Iniciação 4E em Eucariotos/antagonistas & inibidores , Fator de Iniciação 4E em Eucariotos/metabolismo , Humanos , Células MCF-7 , Masculino , Camundongos , Camundongos Nus , Camundongos SCID , Estrutura Molecular , Neoplasias da Próstata/patologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Receptores Adrenérgicos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade , Tretinoína/síntese química , Tretinoína/química , Tretinoína/farmacologia , Células Tumorais Cultivadas
4.
J Med Chem ; 56(12): 4880-98, 2013 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-23713567

RESUMO

As part of our program to explore the influence of small structural modifications of our drug candidate 3ß-(hydroxy)-17-(1H-benzimidazol-1-yl)androsta-5,16-diene (galeterone, 5) on the modulation of the androgen receptor (AR), we have prepared and evaluated a series of novel C-3, C-16, and C-17 analogues. Using structure activity analysis, we established that the benzimidazole moiety at C-17 is essential and optimal and also that hydrophilic and heteroaromatic groups at C-3 enhance both antiproliferative (AP) and AR degrading (ARD) activities. The most potent antiproliferative compounds were 3ß-(1H-imidazole-1-carboxylate)-17-(1H-benzimidazol-1-yl)androsta-5,16-diene (47), 3-((EZ)-hydroximino)-17-(1H-benzimidazol-1-yl)androsta-4,16-diene (36), and 3ß-(pyridine-4-carboxylate)-17-(1H-benzimidazol-1-yl)androsta-5,16-diene (43), with GI50 values of 0.87, 1.91, and 2.57 µM, respectively. Compared to 5, compound 47 was 4- and 8-fold more potent with respect to AP and ARD activities, respectively. Importantly, we also discovered that our compounds, including 5, 36, 43, and 47, could degrade both full-length and truncated ARs in CWR22rv1 human prostate cancer cells. With these activities, they have potential for development as new drugs for the treatment of all forms of prostate cancer.


Assuntos
Androstadienos/química , Androstadienos/farmacologia , Benzimidazóis/química , Benzimidazóis/farmacologia , Regulação para Baixo/efeitos dos fármacos , Desenho de Fármacos , Terapia de Alvo Molecular , Neoplasias da Próstata/tratamento farmacológico , Receptores Androgênicos/metabolismo , Androstadienos/uso terapêutico , Benzimidazóis/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Masculino , Neoplasias da Próstata/patologia , Proteólise/efeitos dos fármacos , Receptores Androgênicos/genética , Esteroide 17-alfa-Hidroxilase/antagonistas & inibidores , Ativação Transcricional/efeitos dos fármacos
5.
Cancer Chemother Pharmacol ; 70(2): 339-44, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22580781

RESUMO

PURPOSE: Novel retinoic acid metabolism blocking agent (RAMBA), VN/12-1, is a highly potent anti-cancer agent that induces autophagy. Its combination with autophagy inhibitor chloroquine (CHL) has been shown to synergistically enhance apoptosis in breast cancer cells. The purpose of this study was to determine the toxicity and pharmacokinetic profile of VN/12-1 and its combination with CHL. METHODS: Preliminary toxicology of VN/12-1 was determined using female SCID mice (n = 4 for each group). ATRA was used for comparison. We selected four different doses of VN/12-1 and ATRA. Two of the doses were low and less frequent (2.5 and 5 mg/kg twice a week), and the remaining doses were high and more frequent (10 and 20 mg/kg every day). The dose of CHL was 50 mg/kg twice a week. For pharmacokinetic (PK) study, 20 mg/kg of VN/12-1 was injected subcutaneously (s.c.) into the mice, and their plasma was collected at various intervals (n = 2) and analyzed by HPLC. RESULTS: The lower and less frequent doses of VN/12-1 and ATRA were found to be least toxic. However, high and more frequent doses of these compounds were toxic to the mice. PK results showed that VN/12-1 has a half-life of 6 h. The area under the curve (AUC) for VN/12-1 was 83.78 h µg/ml. CONCLUSIONS: VN/12-1 and ATRA are non-toxic when used as 5 mg/kg twice a week as single agents or in combination with CHL. The favorable PK properties of VN/12-1 can potentially be used for its further advanced pre-clinical and clinical development.


Assuntos
Antineoplásicos/farmacocinética , Antineoplásicos/toxicidade , Imidazóis/farmacocinética , Imidazóis/toxicidade , Tretinoína/análogos & derivados , Animais , Antineoplásicos/administração & dosagem , Autofagia/efeitos dos fármacos , Cloroquina/administração & dosagem , Cloroquina/farmacocinética , Cloroquina/toxicidade , Cromatografia Líquida de Alta Pressão , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Feminino , Imidazóis/administração & dosagem , Injeções Subcutâneas , Camundongos , Camundongos SCID , Estrutura Molecular , Testes de Toxicidade , Tretinoína/administração & dosagem , Tretinoína/metabolismo , Tretinoína/farmacocinética , Tretinoína/toxicidade
6.
Mol Cancer Ther ; 11(4): 898-908, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22334589

RESUMO

VN/12-1 is a novel retinoic acid metabolism blocking agent discovered in our laboratory. The purpose of the study was to elucidate the molecular mechanism of anticancer activity of VN/12-1 in breast cancer cell lines and in tumor xenografts. We investigated the effects of VN/12-1 on induction of autophagy and apoptosis in SKBR-3 cells. Furthermore, we also examined the impact of pharmacologic and genomic inhibition of autophagy on anticancer activity of VN/12-1. Finally, the antitumor activity of VN/12-1 was evaluated as a single agent and in combination with autophagy inhibitor chloroquine in an SKBR-3 mouse xenograft model. Short exposure of low dose (<10 µmol/L) of VN/12-1 induced endoplasmic reticulum stress, autophagy, and inhibited G(1)-S phase transition and caused a protective response. However, a higher dose of VN/12-1 initiated apoptosis in vitro. Inhibition of autophagy using either pharmacologic inhibitors or RNA interference of Beclin-1 enhanced anticancer activity induced by VN/12-1 in SKBR-3 cells by triggering apoptosis. Importantly, VN/12-1 (5 mg/kg twice weekly) and the combination of VN/12-1 (5 mg/kg twice weekly) + chloroquine (50 mg/kg twice weekly) significantly suppressed established SKBR-3 tumor growth by 81.4% (P < 0.001 vs. control) and 96.2% (P < 0.001 vs. control), respectively. Our novel findings suggest that VN/12-1 may be useful as a single agent or in combination with autophagy inhibitors for treating human breast cancers. Our data provides a strong rationale for clinical evaluation of VN/12-1 as single agent or in combination with autophagy inhibitors.


Assuntos
Autofagia/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Imidazóis/farmacologia , Tretinoína/análogos & derivados , Tretinoína/antagonistas & inibidores , Animais , Apoptose/efeitos dos fármacos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Processos de Crescimento Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sinergismo Farmacológico , Feminino , Humanos , Camundongos , Camundongos SCID , Tretinoína/metabolismo , Tretinoína/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...