Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3968, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38729925

RESUMO

Understanding complex reaction systems is critical in chemistry. While synthetic methods for selective formation of products are sought after, oftentimes it is the full reaction signature, i.e., complete profile of products/side-products, that informs mechanistic rationale and accelerates discovery chemistry. Here, we report a methodology using high-throughput experimentation and multivariate data analysis to examine the full signature of one of the most complicated chemical reactions catalyzed by palladium known in the chemical literature. A model Pd-catalyzed reaction was selected involving functionalization of 2-bromo-N-phenylbenzamide and multiple bond activation pathways. Principal component analysis, correspondence analysis and heatmaps with hierarchical clustering reveal the factors contributing to the variance in product distributions and show associations between solvents and reaction products. Using robust data from experiments performed with eight solvents, for four different reaction times at five different temperatures, we correlate side-products to a major dominant N-phenyl phenanthridinone product, and many other side products.

2.
ChemMedChem ; : e202400269, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724444

RESUMO

Targeting the protein arginine methyltransferase 1 (PRMT1) has emerged as a promising therapeutic strategy in cancer treatment. The phase 1 clinical trial for GSK3368715, the first PRMT1 inhibitor to enter the clinic, was terminated early due to a lack of clinical efficacy, extensive treatment-emergent effects, and dose-limiting toxicities. The incidence of the latter two events may be associated with inhibition-driven pharmacology as a high and sustained concentration of inhibitor is required for therapeutic effect. The degradation of PRMT1 using a proteolysis targeting chimera (PROTAC) may be superior to inhibition as proceeds via event-driven pharmacology where a PROTAC acts catalytically at a low dose. PROTACs containing the same pharmacophore as GSK3368715, combined with a motif that recruits the VHL or CRBN E3-ligase, were synthesised. Suitable cell permeability and target engagement were shown for selected candidates by the detection of downstream effects of PRMT1 inhibition and by a NanoBRET assay for E3-ligase binding, however the candidates did not induce PRMT1 degradation. This paper is the first reported investigation of PRMT1 for targeted protein degradation and provides hypotheses and insights to assist the design of PROTACs for PRMT1 and other novel target proteins.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...