Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20246678

RESUMO

AO_SCPLOWBSTRACTC_SCPLOWEarly detection of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been proven crucial during the efforts to mitigate the effects of the COVID-19 pandemic. Several diagnostic methods have emerged in the past few months, each with different shortcomings and limitations. The current gold standard, RT-qPCR using fluorescent probes, relies on demanding equipment requirements plus the high costs of the probes and specific reaction mixes. To broaden the possibilities of reagents and thermocyclers that could be allocated towards this task, we have optimized an alternative strategy for RT-qPCR diagnosis. This is based on a widely used DNA-intercalating dye and can be implemented with several different qPCR reagents and instruments. Remarkably, the proposed qPCR method performs similarly to the broadly used TaqMan-based detection, in terms of specificity and sensitivity, thus representing a reliable tool. We think that, through enabling the use of vast range of thermocycler models and laboratory facilities for SARS-CoV-2 diagnosis, the alternative proposed here can increase dramatically the testing capability, especially in countries with limited access to costly technology and reagents.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-082925

RESUMO

Coronavirus disease 2019 (COVID-19) is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The rapid, sensitive and specific diagnosis of SARS-CoV-2 by fast and unambiguous testing is widely recognized to be critical in responding to the ongoing outbreak. Since the current testing capacity of RT-PCR-based methods is being challenged due to the extraordinary demand of supplies, such as RNA extraction kits and PCR reagents worldwide, alternative and/or complementary testing assays should be developed. Here, we exploit the potential of mass spectrometry technology combined with machine learning algorithms as an alternative fast tool for SARS-CoV-2 detection from nasopharyngeal swabs samples. According to our preliminary results, mass spectrometry-based methods combined with multivariate analysis showed an interesting potential as a complementary diagnostic tool and further steps should be focused on sample preparation protocols and the improvement of the technology applied.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA