Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int Rev Neurobiol ; 82: 277-96, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17678967

RESUMO

Inflammation is the body's defense mechanism against threats such as bacterial infection, undesirable substances, injury, or illness. The process is complex and involves a variety of specialized cells that mobilize to neutralize and dispose of the injurious material so that the body can heal. In the brain, a similar inflammation process occurs when glia, especially astrocytes and microglia, undergo activation in response to stimuli such as injury, illness, or infection. Like peripheral immune cells, glia in the central nervous system also increase production of inflammatory cytokines and neutralize the threat to the brain. This brain inflammation, or neuroinflammation, is generally beneficial and allows the brain to respond to changes in its environment and dispose of damaged tissue or undesirable substances. Unfortunately, this beneficial process sometimes gets out of balance and the neuroinflammatory process persists, even when the inflammation-provoking stimulus is eliminated. Uncontrolled chronic neuroinflammation is now known to play a key role in the progression of damage in a number of neurodegenerative diseases. Thus, overproduction of proinflammatory cytokines offers a pathophysiology progression mechanism that can be targeted in new therapeutic development for multiple neurodegenerative diseases. We summarize in this chapter the evidence supporting proinflammatory cytokine upregulation as a therapeutic target for neurodegenerative disorders, with a focus on Alzheimer's disease. In addition, we discuss the drug discovery process and two approaches, function-driven and target-based, that show promise for development of neuroinflammation-targeted, disease-modifying therapeutics for multiple neurodegenerative disorders.


Assuntos
Citocinas/fisiologia , Mediadores da Inflamação/fisiologia , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/fisiopatologia , Neuroglia/efeitos dos fármacos , Neuroglia/fisiologia , Doença de Alzheimer/patologia , Doença de Alzheimer/fisiopatologia , Animais , Sistemas de Liberação de Medicamentos , Humanos , Fosforilação , Transdução de Sinais/fisiologia , Regulação para Cima/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...