Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21260863

RESUMO

BackgroundLong-term persistence of antibodies against SARS-CoV-2, particularly the SARS-CoV-2 Spike Trimer, determines individual protection against infection and potentially viral spread. The quality of childrens natural humoral immune response following SARS-CoV-2 infection is yet incompletely understood but crucial to guide pediatric SARS-CoV-2 vaccination programs. MethodsIn this prospective observational multi-center cohort study, we followed 328 households, consisting of 548 children and 717 adults, with at least one member with a previous laboratory-confirmed SARS-CoV-2 infection. The serological response was assessed at 3-4 months and 11-12 months after infection using a bead-based multiplex immunoassay for 23 human coronavirus antigens including SARS-CoV-2 and its Variants of Concern (VOC) and endemic human coronaviruses (HCoVs), and additionally by three commercial SARS-CoV-2 antibody assays. ResultsOverall, 33.76% of SARS-CoV-2 exposed children and 57.88% adults were seropositive. Children were five times more likely to have seroconverted without symptoms compared to adults. Despite the frequently asymptomatic course of infection, children had higher specific antibody levels, and their antibodies persisted longer than in adults (96.22% versus 82.89% still seropositive 11-12 months post infection). Of note, symptomatic and asymptomatic infections induced similar humoral responses in all age groups. In symptomatic children, only dysgeusia was found as diagnostic indicator of COVID-19. SARS-CoV-2 infections occurred independent of HCoV serostatus. Antibody binding responses to VOCs were similar in children and adults, with reduced binding for the Beta variant in both groups. ConclusionsThe long-term humoral immune response to SARS-CoV-2 infection in children is robust and may provide long-term protection even after asymptomatic infection. (Study ID at German Clinical Trials Register: 00021521)

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21257586

RESUMO

BackgroundThe COVID-19 pandemic has led to a high interest in mathematical models describing and predicting the diverse aspects and implications of the virus outbreak. Model results represent an important part of the information base for the decision process on different administrative levels. The Robert-Koch-Institute (RKI) initiated a project whose main goal is to predict COVID-19-specific occupation of beds in intensive care units: Steuerungs-Prognose von Intensivmedizinischen COVID-19 Kapazitaten (SPoCK). The incidence of COVID-19 cases is a crucial predictor for this occupation. MethodsWe developed a model based on ordinary differential equations for the COVID-19 spread with a time-dependent infection rate described by a spline. Furthermore, the model explicitly accounts for weekday-specific reporting and adjusts for reporting delay. The model is calibrated in a purely data-driven manner by a maximum likelihood approach. Uncertainties are evaluated using the profile likelihood method. The uncertainty about the appropriate modeling assumptions can be accounted for by including and merging results of different modelling approaches. ResultsThe model is calibrated based on incident cases on a daily basis and provides daily predictions of incident COVID-19 cases for the upcoming three weeks including uncertainty estimates for Germany and its subregions. Derived quantities such as cumulative counts and 7-day incidences with corresponding uncertainties can be computed. The estimation of the time-dependent infection rate leads to an estimated reproduction factor that is oscillating around one. Data-driven estimation of the dark figure purely from incident cases is not feasible. ConclusionsWe successfully implemented a procedure to forecast near future COVID-19 incidences for diverse subregions in Germany which are made available to various decision makers via an interactive web application. Results of the incidence modeling are also used as a predictor for forecasting the need of intensive care units.

3.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20248761

RESUMO

BackgroundThe COVID-19 pandemic poses the risk of overburdening health care systems, and in particular intensive care units (ICUs). Non-pharmaceutical interventions (NPIs), ranging from wearing masks to (partial) lockdowns have been implemented as mitigation measures around the globe. However, especially severe NPIs are used with great caution due to their negative effects on the economy, social life and mental well-being. Thus, understanding the impact of the pandemic on ICU demand under alternative scenarios reflecting different levels of NPIs is vital for political decision-making on NPIs. ObjectiveThe aim is to support political decision-making by forecasting COVID-19-related ICU demand under alternative scenarios of COVID-19 progression reflecting different levels of NPIs. Substantial sub-national variation in COVID-19-related ICU demand requires a spatially disaggregated approach. This should not only take sub-national variation in ICU-relevant disease dynamics into account, but also variation in the population at risk including COVID-19-relevant risk characteristics (e.g. age), and factors mitigating the pandemic. The forecast provides indications for policy makers and health care stakeholders as to whether mitigation measures have to be maintained or even strengthened to prevent ICU demand from exceeding supply, or whether there is leeway to relax them. MethodsWe implement a spatial age-structured microsimulation model of the COVID-19 pandemic by extending the Susceptible-Exposed-Infectious-Recovered (SEIR) framework. The model accounts for regional variation in population age structure and in spatial diffusion pathways. In a first step, we calibrate the model by applying a genetic optimization algorithm against hospital data on ICU patients with COVID-19. In a second step, we forecast COVID-19-related ICU demand under alternative scenarios of COVID 19 progression reflecting different levels of NPIs. We apply the model to Germany and provide state-level forecasts over a 2-month period, which can be updated daily based on latest data on the progression of the pandemic. ResultsTo illustrate the merits of our model, we present here "forecasts" of ICU demand for different stages of the pandemic during 2020. Our forecasts for a quiet summer phase with low infection rates identified quite some variation in potential for relaxing NPIs across the federal states. By contrast, our forecasts during a phase of quickly rising infection numbers in autumn (second wave) suggested that all federal states should implement additional NPIs. However, the identified needs for additional NPIs varied again across federal states. In addition, our model suggests that during large infection waves ICU demand would quickly exceed supply, if there were no NPIs in place to contain the virus. ConclusionOur results provide evidence for substantial spatial variation in (1) the effect of the pandemic on ICU demand, and (2) the potential and need for NPI adjustments at different stages of the pandemic. Forecasts with our spatial age-structured microsimulation model allow to take this spatial variation into account. The model is programmed in R and can be applied to other countries, provided that reliable data on the number of ICU patients infected with COVID-19 are available at sub-national level.

4.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20160127

RESUMO

BackgroundReported mortality of hospitalised COVID-19 patients varies substantially, particularly in critically ill patients. So far COVID-19 in-hospital mortality and modes of death under optimised care conditions have not been systematically studied. MethodsThis retrospective observational monocenter cohort study was performed after implementation of a non-restricted, dynamic tertiary care model at the University Medical Center Freiburg, an experienced ARDS and ECMO referral center. All hospitalised patients with PCR-confirmed SARS-CoV-2 infection were included. The primary endpoint was in-hospital mortality, secondary endpoints included major complications and modes of death. A multistate analysis and a Cox regression analysis for competing risk models were performed. Modes of death were determined by two independent reviewers. ResultsBetween February 25, and May 8, 213 patients were included in the analysis. The median age was 65 years, 129 patients (61%) were male. 70 patients (33%) were admitted to the intensive care unit (ICU), of which 57 patients (81%) received mechanical ventilation and 23 patients (33%) extracorporeal membrane-oxygenation (ECMO) support. According to the multistate model the probability to die within 90 days after COVID-19 onset was 24% in the whole cohort. If the levels of care at time of study entry were accounted for, the probabilities to die were 16% if the patient was initially on a regular ward, 47% if in the ICU and 57% if mechanical ventilation was required at study entry. Age [≥]65 years and male sex were predictors for in-hospital death. Predominant complications - as judged by two independent reviewers - determining modes of death were multi-organ failure, septic shock and thromboembolic and hemorrhagic complications. ConclusionIn a dynamic care model COVID-19-related in-hospital mortality remained substantial. In the absence of potent antiviral agents, strategies to alleviate or prevent the identified complications should be investigated. In this context, multistate analyses enable comparison of models-of-care and treatment strategies and allow estimation and allocation of health care resources. RegistrationGerman Clinical Trials Register (identifier DRKS00021775), retrospectively registered June 10, 2020.

5.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20143206

RESUMO

BackgroundThe pressures exerted by the pandemic of COVID-19 pose an unprecedented demand on health care services. Hospitals become rapidly overwhelmed when patients requiring life-saving support outpace available capacities. We here describe methods used by a university hospital to forecast caseloads and time to peak incidence. MethodsWe developed a set of models to forecast incidence among the hospital catchment population and describe the COVID-19 patient hospital care-path. The first forecast utilized data from antecedent allopatric epidemics and parameterized the care path model according to expert opinion (static model). Once sufficient local data were available, trends for the time dependent effective reproduction number were fitted and the care-path was parameterized using hazards for real patient admission, referrals, and discharge (dynamic model). ResultsThe static model, deployed before the epidemic, exaggerated the bed occupancy (general wards 116 forecasted vs 66 observed, ICU 47 forecasted vs 34 observed) and predicted the peak too late (general ward forecast April 9, observed April 8, ICU forecast April 19, observed April 8). After April 5, the dynamic model could be run daily and precision improved with increasing availability of empirical local data. ConclusionsThe models provided data-based guidance in the preparation and allocation of critical resources of a university hospital well in advance of the epidemic surge, despite overestimating the service demand. Overestimates should resolve when population contact pattern before and during restrictions can be taken into account, but for now they may provide an acceptable safety margin for preparing during times of uncertainty.

6.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20049007

RESUMO

BackgroundMany trials are now underway to inform decision-makers on potential effects of treatments for COVID-19. To provide sufficient information for all involved decision-makers (clinicians, public health authorities, drug regulatory agencies) a multiplicity of endpoints must be considered. It is a challenge to generate detailed high quality evidence from data while ensuring fast availability and evaluation of the results. MethodsWe reviewed all interventional COVID-19 trials on Remdesivir, Lopinavir/ritonavir and Hydroxychloroquine registered in the National Library of Medicine (NLM) at the National Institutes of Health (NIH) and summarized the endpoints used to assess treatment effects. We propose a multistate model that harmonizes heterogeneous endpoints and differing lengths of follow-up within and between trials. ResultsThere are currently, March 27, 2020, 23 registered interventional trials investigating the potential benefits of Remdesivir, Lopinavir/ritonavir and Hydroxychloroquine. The endpoints are highly heterogeneous. Follow-up for the primary endpoints ranges from four to 168 days. A detailed precisely defined endpoint has been proposed by the global network REMAP-CAP, which is specialized on community-acquired pneumonia. Their seven-category endpoint accounts for major clinical events informative for all decision-makers. Moreover, the Core Outcome Measures in Effectiveness Trials (COMET) Initiative is currently working on a core outcome set. We propose a multistate model that accommodates analysis of these recommended endpoints. The model allows for a detailed investigation of treatment effects for various endpoints over the course of time thereby harmonizing differing endpoints and lengths of follow-up. ConclusionMultistate model analysis is a powerful tool to study clinically heterogeneous endpoints (mortality, discharge) as well as endpoints influencing hospital capacities (duration of hospitalization and ventilation) simultaneously over time. Our proposed model extracts all information available in the data and is - by harmonizing endpoints within and between trials - a step towards faster decision making. All ongoing clinical trials, especially those with severe cases, should accommodate primary analysis with a stacked probability plot of the major events mechanical ventilation, discharge alive and death.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...