Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38895311

RESUMO

Alterations induced by maternal immune activation (MIA) during gestation impact the subsequent neurodevelopment of progeny, a process that in humans, has been linked to the development of several neuropsychiatric conditions. To undertake a comprehensive examination of the molecular mechanisms governing MIA, we have devised an in vitro model based on neural stem cells (NSCs) sourced from fetuses carried by animals subjected to Poly I:C treatment. These neural progenitors demonstrate proliferative capacity and can be effectively differentiated into both neurons and glial cells. Transcriptomic, proteomic, and phosphoproteomic analyses conducted on these cellular models, in conjunction with counterparts from control treatments, revealed discernible shifts in the expression levels of a specific subset of proteins implicated in neuronal function. Noteworthy, we found an absence of congruence between these alterations at the transcriptomic level, suggesting that differences in protein translation contribute to the observed dysregulation. Furthermore, the phosphoproteomic data highlighted a discernible discrepancy in the basal phosphorylation of proteins between differentiated cells from both experimental groups, particularly within proteins associated with cytoskeletal architecture and synaptic functionality, notably those belonging to the MAP family. Observed alterations in MAP phosphorylation were found to potentially have functional consequences as they correlate with changes in neuronal plasticity and the establishment of neuronal synapses. Our data agrees with previous published observations and further underscore the importance of MAP2 phosphorylation state on its function and the impact that this protein has in neuronal structure and function.

2.
Glia ; 72(6): 1201-1214, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38482950

RESUMO

Microglia play an important protective role in the healthy nervous tissue, being able to react to a variety of stimuli that induce different intracellular cascades for specific tasks. Ca2+ signaling can modulate these pathways, and we recently reported that microglial functions depend on the endoplasmic reticulum as a Ca2+ store, which involves the Ca2+ transporter SERCA2b. Here, we investigated whether microglial functions may also rely on the Golgi, another intracellular Ca2+ store that depends on the secretory pathway Ca2+/Mn2+-transport ATPase isoform 1 (SPCA1). We found upregulation of SPCA1 upon lipopolysaccharide stimulation of microglia BV2 cells and primary microglia, where alterations of the Golgi ribbon were also observed. Silencing and overexpression experiments revealed that SPCA1 affects cell morphology, Golgi apparatus integrity, and phagocytic functions. Since SPCA1 is also an efficient Mn2+ transporter and considering that Mn2+ excess causes manganism in the brain, we addressed the role of microglial SPCA1 in Mn2+ toxicity. Our results revealed a clear effect of Mn2+ excess on the viability and morphology of microglia. Subcellular analysis showed Golgi fragmentation and subsequent alteration of SPCA1 distribution from early stages of toxicity. Removal of Mn2+ by washing improved the culture viability, although it did not effectively reverse Golgi fragmentation. Interestingly, pretreatment with curcumin maintained microglia cultures viable, prevented Mn2+-induced Golgi fragmentation, and preserved SPCA Ca2+-dependent activity, suggesting curcumin as a potential protective agent against Mn2+-induced Golgi alterations in microglia.


Assuntos
Adenosina Trifosfatases , Curcumina , Adenosina Trifosfatases/metabolismo , Lipopolissacarídeos/toxicidade , Microglia/metabolismo , ATPases Transportadoras de Cálcio/genética , ATPases Transportadoras de Cálcio/metabolismo , Via Secretória , Curcumina/metabolismo , Regulação para Cima , Complexo de Golgi/metabolismo , Complexo de Golgi/ultraestrutura , Proteínas de Membrana Transportadoras/metabolismo , Isoformas de Proteínas/metabolismo , Cálcio/metabolismo
3.
Antioxidants (Basel) ; 13(1)2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38275652

RESUMO

Antioxidant defenses in biological systems ensure redox homeostasis, regulating baseline levels of reactive oxygen and nitrogen species (ROS and RNS). Oxidative stress (OS), characterized by a lack of antioxidant defenses or an elevation in ROS and RNS, may cause a modification of biomolecules, ROS being primarily absorbed by proteins. As a result of both genome and environment interactions, proteomics provides complete information about a cell's proteome, which changes continuously. Besides measuring protein expression levels, proteomics can also be used to identify protein modifications, localizations, the effects of added agents, and the interactions between proteins. Several oxidative processes are frequently used to modify proteins post-translationally, including carbonylation, oxidation of amino acid side chains, glycation, or lipid peroxidation, which produces highly reactive alkenals. Reactive alkenals, such as 4-hydroxy-2-nonenal, are added to cysteine (Cys), lysine (Lys), or histidine (His) residues by a Michael addition, and tyrosine (Tyr) residues are nitrated and Cys residues are nitrosylated by a Michael addition. Oxidative and nitrosative stress have been implicated in many neurodegenerative diseases as a result of oxidative damage to the brain, which may be especially vulnerable due to the large consumption of dioxygen. Therefore, the current methods applied for the detection, identification, and quantification in redox proteomics are of great interest. This review describes the main protein modifications classified as chemical reactions. Finally, we discuss the importance of redox proteomics to health and describe the analytical methods used in redox proteomics.

4.
Front Cell Neurosci ; 17: 1120400, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37006469

RESUMO

During development microglia colonize the central nervous system (CNS) and play an important role in programmed cell death, not only because of their ability to remove dead cells by phagocytosis, but also because they can promote the death of neuronal and glial cells. To study this process, we used as experimental systems the developing in situ quail embryo retina and organotypic cultures of quail embryo retina explants (QEREs). In both systems, immature microglia show an upregulation of certain inflammatory markers, e.g., inducible NO synthase (iNOS), and nitric oxide (NO) under basal conditions, which can be further enhanced with LPS-treatment. Hence, we investigated in the present study the role of microglia in promoting ganglion cell death during retinal development in QEREs. Results showed that LPS-stimulation of microglia in QEREs increases (i) the percentage of retinal cells with externalized phosphatidylserine, (ii) the frequency of phagocytic contacts between microglial and caspase-3-positive ganglion cells, (iii) cell death in the ganglion cell layer, and (iv) microglial production of reactive oxygen/nitrogen species, such as NO. Furthermore, iNOS inhibition by L-NMMA decreases cell death of ganglion cells and increases the number of ganglion cells in LPS-treated QEREs. These data demonstrate that LPS-stimulated microglia induce ganglion cell death in cultured QEREs by a NO-dependent mechanism. The fact that phagocytic contacts between microglial and caspase-3-positive ganglion cells increase suggests that this cell death might be mediated by microglial engulfment, although a phagocytosis-independent mechanism cannot be excluded.

5.
Front Cell Neurosci ; 16: 816439, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35197828

RESUMO

Microglia are the tissue-resident macrophages of the central nervous parenchyma. In mammals, microglia are thought to originate from yolk sac precursors and posteriorly maintained through the entire life of the organism. However, the contribution of microglial cells from other sources should also be considered. In addition to "true" or "bona-fide" microglia, which are of embryonic origin, the so-called "microglia-like cells" are hematopoietic cells of bone marrow origin that can engraft the mature brain mainly under pathological conditions. These cells implement great parts of the microglial immune phenotype, but they do not completely adopt the "true microglia" features. Because of their pronounced similarity, true microglia and microglia-like cells are usually considered together as one population. In this review, we discuss the origin and development of these two distinct cell types and their differences. We will also review the factors determining the appearance and presence of microglia-like cells, which can vary among species. This knowledge might contribute to the development of therapeutic strategies aiming at microglial cells for the treatment of diseases in which they are involved, for example neurodegenerative disorders like Alzheimer's and Parkinson's diseases.

6.
Biomolecules ; 12(2)2022 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-35204722

RESUMO

Neurological disorders, including neurodegenerative diseases, are often characterized by neuroinflammation, which is largely driven by microglia, the resident immune cells of the central nervous system (CNS). Under these conditions, microglia are able to secrete neurotoxic substances, provoking neuronal cell death. However, microglia in the healthy brain carry out CNS-supporting functions. This is due to the ability of microglia to acquire different phenotypes that can play a neuroprotective role under physiological conditions or a pro-inflammatory, damaging one during disease. Therefore, therapeutic strategies focus on the downregulation of these neuroinflammatory processes and try to re-activate the neuroprotective features of microglia. Mesenchymal stem cells (MSC) of different origins have been shown to exert such effects, due to their immunomodulatory properties. In recent years, MSC derived from adipose tissue have been made the center of attention because of their easy availability and extraction methods. These cells induce a neuroprotective phenotype in microglia and downregulate neuroinflammation, resulting in an improvement of clinical symptoms in a variety of animal models for neurological pathologies, e.g., Alzheimer's disease, traumatic brain injury and ischemic stroke. In this review, we will discuss the application of adipose tissue-derived MSC and their conditioned medium, including extracellular vesicles, in neurological disorders, their beneficial effect on microglia and the signaling pathways involved.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , Doenças Neurodegenerativas , Animais , Células-Tronco Mesenquimais/metabolismo , Microglia/metabolismo , Doenças Neurodegenerativas/metabolismo , Neuroproteção
7.
Biochem Pharmacol ; 185: 114440, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33539816

RESUMO

Antipsychotic drugs remain the current standard for schizophrenia treatment. Although they directly recognize the orthosteric binding site of numerous monoaminergic G protein-coupled receptors (GPCRs), these drugs, and particularly second-generation antipsychotics such as clozapine, all have in common a very high affinity for the serotonin 5-HT2A receptor (5-HT2AR). Using classical pharmacology and targeted signaling pathway assays, previous findings suggest that clozapine and other atypical antipsychotics behave principally as 5-HT2AR neutral antagonists and/or inverse agonists. However, more recent findings showed that antipsychotics may also behave as pathway-specific agonists. Reversible phosphorylation is a common element in multiple signaling networks. Combining a quantitative phosphoproteomic method with signaling network analysis, we tested the effect of clozapine treatment on the overall level of protein phosphorylation and signal transduction cascades in vitro in mammalian cell lines induced to express either the human 5-HT2AR or the H452Y variant of the gene encoding the 5-HT2AR receptor. This naturally occurring variation within the 5-HT2AR gene was selected because it has been repeatedly associated with schizophrenia patients who do not respond to clozapine treatment. Our data show that short time exposure (5 or 10 min) to clozapine (10-5 M) led to phosphorylation of numerous signaling components of pathways involved in processes such as endocytosis, ErbB signaling, insulin signaling or estrogen signaling. Cells induced to express the H452Y variant showed a different basal phosphoproteome, with increases in the phosphorylation of mTOR signaling components as a translationally relevant example. However, the effect of clozapine on the functional landscape of the phosphoproteome was significantly reduced in cells expressing the 5-HT2AR-H452Y construct. Together, these findings suggest that clozapine behaves as an agonist inducing phosphorylation of numerous pathways downstream of the 5-HT2AR, and that the single nucleotide polymorphism encoding 5-HT2AR-H452Y affects these clozapine-induced phosphorylation-dependent signaling networks.


Assuntos
Clozapina/metabolismo , Histamina/genética , Polimorfismo de Nucleotídeo Único/genética , Proteômica/métodos , Receptor 5-HT2A de Serotonina/genética , Tirosina/genética , Membrana Celular/efeitos dos fármacos , Membrana Celular/genética , Membrana Celular/metabolismo , Clozapina/farmacologia , Relação Dose-Resposta a Droga , Células HEK293 , Histamina/metabolismo , Humanos , Fosforilação/efeitos dos fármacos , Fosforilação/fisiologia , Receptor 5-HT2A de Serotonina/metabolismo , Antagonistas da Serotonina/metabolismo , Antagonistas da Serotonina/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Tirosina/metabolismo
8.
J Biosci ; 462021.
Artigo em Inglês | MEDLINE | ID: mdl-33576344

RESUMO

Advanced-stage gastrointestinal tumors have high mortality due to chemotherapy limitations. One of the causes of treatment failure is the presence of cancer stem cells (CSCs), which show resistance mechanisms against DNA damage, such as poly (adenosine diphosphate-ribose) polymerase 1 (PARP-1). However, little is known about the relevance of PARP-1 in these tumor cells. Our purpose is to analyze the expression of PARP-1 in cancer cells and CSCs from gastrointestinal tumors, its relationship with the DNA damage repair process and its modulation by cytotoxic and PARP-1 inhibitors. We used pancreatic, liver and colon cancer cell lines and isolated CSCs using Aldefluor technology to analyze PARP-1 expression. In addition, we examined the effect of classic cytotoxic drugs (Doxorubicin, Gemcitabine, Irinotecan and 5-Fluorouracil) and a PARP-1 inhibitor (Olaparib) in cultured cells and 3D tumorspheres. We demonstrated that PARP-1 is highly expressed in pancreatic, liver and colon tumor cells and that this expression was significantly higher in cell populations with CSC characteristics. In addition, Doxorubicin and Gemcitabine increased their cytotoxic effect when administered simultaneously with Olaparib, decreasing the formation of 3D tumorspheres. Our findings suggest that PARP-1 is a common and relevant resistance mechanism in CSCs from gastrointestinal tumors and that the use of PARP-1 inhibitors may be an adjuvant therapy to increase apoptosis in this type of cells which are responsible to cancer recurrence and metastasis.


Assuntos
Proliferação de Células/efeitos dos fármacos , Neoplasias Gastrointestinais/tratamento farmacológico , Ftalazinas/farmacologia , Piperazinas/farmacologia , Poli(ADP-Ribose) Polimerase-1/genética , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/genética , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Fluoruracila/farmacologia , Neoplasias Gastrointestinais/genética , Neoplasias Gastrointestinais/patologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células Hep G2 , Humanos , Irinotecano/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Camundongos , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Ensaios Antitumorais Modelo de Xenoenxerto , Gencitabina
9.
Glia ; 69(4): 842-857, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33105046

RESUMO

Activation of microglia is an early immune response to damage in the brain. Although a key role for Ca2+ as trigger of microglial activation has been considered, little is known about the molecular scenario for regulating Ca2+ homeostasis in these cells. Taking into account the importance of the endoplasmic reticulum as a cellular Ca2+ store, the sarco(endo)plasmic reticulum Ca2+ -ATPase (SERCA2b) is an interesting target to modulate intracellular Ca2+ dynamics. We found upregulation of SERCA2b in activated microglia of human brain with Alzheimer's disease and we further studied the participation of SERCA2b in microglial functions by using the BV2 murine microglial cell line and primary microglia isolated from mouse brain. To trigger microglia activation, we used the bacterial lipopolysaccharide (LPS), which is known to induce an increase of cytosolic Ca2+ . Our results showed an upregulated expression of SERCA2b in LPS-induced activated microglia likely associated to an attempt to restore the increased cytosolic Ca2+ concentration. We analyzed SERCA2b contribution in microglial migration by using the specific SERCA inhibitor thapsigargin in scratch assays. Microglial migration was strongly stimulated with thapsigargin, even more than with LPS-induction, but delayed in time. However, phagocytic capacity of microglia was blocked in the presence of the SERCA inhibitor, indicating the importance of a tight control of cytosolic Ca2+ in these processes. All together, these results provide for the first time compelling evidence for SERCA2b as a major player regulating microglial functions, affecting migration and phagocytosis in an opposite manner.


Assuntos
Microglia , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático , Animais , Cálcio/metabolismo , Retículo Endoplasmático/metabolismo , Lipopolissacarídeos/toxicidade , Camundongos , Microglia/metabolismo , Fagocitose , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Tapsigargina/farmacologia
10.
Biochem J ; 477(23): 4491-4513, 2020 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-33146386

RESUMO

Poly(ADP-ribose) polymerase 1 (PARP-1) is a nuclear enzyme that catalyze the transfer of ADP-ribose units from NAD+ to several target proteins involved in cellular stress responses. Using WRL68 (HeLa derivate) cells, we previously showed that PARP-1 activation induced by oxidative stress after H2O2 treatment lead to depletion of cellular NAD+ and ATP, which promoted cell death. In this work, LC-MS/MS-based phosphoproteomics in WRL68 cells showed that the oxidative damage induced by H2O2 increased the phosphorylation of YAP1, a transcriptional co-activator involved in cell survival, and modified the phosphorylation of other proteins involved in transcription. Genetic or pharmacological inhibition of PARP-1 in H2O2-treated cells reduced YAP1 phosphorylation and degradation and increased cell viability. YAP1 silencing abrogated the protective effect of PARP-1 inhibition, indicating that YAP1 is important for the survival of WRL68 cells exposed to oxidative damage. Supplementation of NAD+ also reduced YAP1 phosphorylation, suggesting that the loss of cellular NAD+ caused by PARP-1 activation after oxidative treatment is responsible for the phosphorylation of YAP1. Finally, PARP-1 silencing after oxidative treatment diminished the activation of the metabolic sensor AMPK. Since NAD+ supplementation reduced the phosphorylation of some AMPK substrates, we hypothesized that the loss of cellular NAD+ after PARP-1 activation may induce an energy stress that activates AMPK. In summary, we showed a new crucial role of PARP-1 in the response to oxidative stress in which PARP-1 activation reduced cell viability by promoting the phosphorylation and degradation of YAP1 through a mechanism that involves the depletion of NAD+.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Estresse Oxidativo , Poli(ADP-Ribose) Polimerase-1/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Células HeLa , Humanos , Peróxido de Hidrogênio/farmacologia , NAD/genética , NAD/metabolismo , Fosforilação/efeitos dos fármacos , Fosforilação/genética , Poli(ADP-Ribose) Polimerase-1/genética , Fatores de Transcrição/genética , Proteínas de Sinalização YAP
11.
Exp Eye Res ; 188: 107790, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31494107

RESUMO

Oxidative stress (OxS) is involved in the development of cell injures occurring in retinal diseases while Poly(ADP-ribose) Polymerase-1 (PARP-1) is a key protein involved in the repair of the DNA damage caused by OxS. Inhibition of PARP-1 activity with the pharmacological inhibitor PJ34 in mouse retinal explants subjected to H2O2-induced oxidative damage resulted in an increase of apoptotic cells. Reduction of cell growth was also observed in the mouse cone like cell line 661 W in the presence of PJ34 under OxS conditions. Mass spectrometry-based phosphoproteomics analysis performed in 661 W cells determined that OxS induced significant changes in the phosphorylation in 1807 of the 8131 peptides initially detected. Blockade of PARP-1 activity after the oxidative treatment additionally increased the phosphorylation of multiple proteins, many of them at SQ motifs and related to the DNA-damage response (DDR). These motifs are substrates of the kinases ATM/ATR, which play a central role in DDR. Western blot analysis confirmed that the ATM/ATR activity measured and the phosphorylation at SQ motifs of ATM/ATR substrates was augmented when PARP-1 activity was inhibited under OxS conditions, in 661 W cells. Phosphorylation of ATM/ATR substrates, including the phosphorylation of the histone H2AX were also induced in organotypic cultures of retinal explants subjected to PARP-1 inhibition during exposure to OxS. In conclusion, inhibition of PARP-1 increased the phosphorylation and hence the activation of several proteins involved in the response to DNA damage, like the ATM protein kinase. This finally resulted in an augmented injury in mouse retinal cells suffering from OxS. Therefore, the inhibition of PARP-1 activity may have a negative outcome in the treatment of retinal diseases in which OxS is involved.


Assuntos
Dano ao DNA , Proteínas do Olho/metabolismo , Estresse Oxidativo , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Retina/patologia , Animais , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Western Blotting , Caspase 3/metabolismo , Morte Celular , Linhagem Celular , Proteínas de Ligação a DNA , Eletroforese em Gel de Poliacrilamida , Histonas/metabolismo , Peróxido de Hidrogênio/toxicidade , Marcação In Situ das Extremidades Cortadas , Camundongos , Camundongos Endogâmicos C57BL , Oxidantes/toxicidade , Fenantrenos/farmacologia , Fosfoproteínas/metabolismo , Fosforilação , Poli(ADP-Ribose) Polimerase-1/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Retina/metabolismo
12.
PLoS One ; 12(10): e0187130, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29073231

RESUMO

Poly(ADP-ribose)polymerases (PARPs) are a family of NAD+ consuming enzymes that play a crucial role in many cellular processes, most clearly in maintaining genome integrity. Here, we present an extensive analysis of the alteration of mitochondrial morphology and the relationship to PARPs activity after oxidative stress using an in vitro model of human hepatic cells. The following outcomes were observed: reactive oxygen species (ROS) induced by oxidative treatment quickly stimulated PARPs activation, promoted changes in mitochondrial morphology associated with early mitochondrial fragmentation and energy dysfunction and finally triggered apoptotic cell death. Pharmacological treatment with specific PARP-1 (the major NAD+ consuming poly(ADP-ribose)polymerases) and PARP-1/PARP-2 inhibitors after the oxidant insult recovered normal mitochondrial morphology and, hence, increased the viability of human hepatic cells. As the PARP-1 and PARP-1/PARP-2 inhibitors achieved similar outcomes, we conclude that most of the PARPs effects were due to PARP-1 activation. NAD+ supplementation had similar effects to those of the PARPs inhibitors. Therefore, PARPs activation and the subsequent NAD+ depletion are crucial events in decreased cell survival (and increased apoptosis) in hepatic cells subjected to oxidative stress. These results suggest that the alterations in mitochondrial morphology and function seem to be related to NAD+ depletion, and show for the first time that PARPs inhibition abrogates mitochondrial fragmentation. In conclusion, the inhibition of PARPs may be a valuable therapeutic approach for treating liver diseases, by reducing the cell death associated with oxidative stress.


Assuntos
Hepatócitos/efeitos dos fármacos , Peróxido de Hidrogênio/farmacologia , Mitocôndrias/efeitos dos fármacos , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Linhagem Celular , Hepatócitos/citologia , Humanos , Espécies Reativas de Oxigênio/metabolismo
13.
Curr Med Chem ; 24(20): 2156-2173, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28302009

RESUMO

Poly(ADP-ribose) polymerase-1 (PARP-1) is a nuclear enzyme that plays a critical role in diverse cellular functions, such as DNA damage detection and repair, transcriptional regulation and cell death. Furthermore, PARP-1 has emerged as a key player in the pathogenesis of multiple inflammatory diseases and has become a promising target for the treatment of cardiovascular disorders, neurodegenerative diseases and cancer. An increasing body of evidence has linked alterations in the expression levels of PARP-1, enzymatic activity and presence of polymorphism to gastrointestinal malignancies, including oesophageal, gastric, pancreas, liver and colorectal cancers. PARP inhibition has been proposed as a valuable strategy for treating these gastrointestinal disorders. This paper summarises the most significant current literature on the involvement of PARP-1 in gastrointestinal cancer, focusing in particular on its role in the development and occurrence of tumours, providing information about clinical trials and exploring therapeutic possibilities.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias Gastrointestinais/tratamento farmacológico , Neoplasias Gastrointestinais/genética , Trato Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/patologia , Poli(ADP-Ribose) Polimerase-1/genética , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Polimorfismo de Nucleotídeo Único , Animais , Antineoplásicos/farmacologia , Descoberta de Drogas , Neoplasias Gastrointestinais/patologia , Trato Gastrointestinal/metabolismo , Humanos , Terapia de Alvo Molecular , Poli(ADP-Ribose) Polimerase-1/análise , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia
14.
Eur J Med Chem ; 106: 106-19, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26523668

RESUMO

A series of new phthalazine derivatives (1-4) containing imidazole rings and functionalized with nitro groups in the benzene ring of the phthalazine moiety were prepared and identified on the basis of their MS, elemental analyses and bidimensional (1)H and (13)C NMR data, and their trypanocidal activity was tested. The 8-nitrosubstituted compound (3) was more active in vitro against Trypanosoma cruzi and less toxic against Vero cells than the reference drug benznidazole, and showed a SI value that was 47-fold better than the reference drug in amastigote forms. It also remarkably reduced the infectivity rate in Vero cells and decreased the reactivation of parasitemia in immunodeficient mice. Ultrastructural alterations found in epimastigotes treated with 3 confirmed extensive cytoplasm destruction in the parasites, whereas histopathological analysis of the hearts of mice infected and treated with 3 resulted in a decrease in cardiac damage. Biochemical markers showed that livers, hearts, and kidneys of treated mice were substantially unaffected by the administration of 3, despite the presence of the potentially toxic nitro group. It was also found that this compound selectively inhibited the antioxidant parasite enzyme Fe-superoxide dismutase (Fe-SOD) in comparison with human CuZn-SOD, and molecular modeling suggested interaction with the H-bonding system of the iron-based moiety as a feasible mechanism of action against the enzyme.


Assuntos
Inibidores Enzimáticos/farmacologia , Imidazóis/química , Imidazóis/farmacologia , Parasitemia/tratamento farmacológico , Ftalazinas/farmacologia , Tripanossomicidas/química , Tripanossomicidas/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Animais , Chlorocebus aethiops , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Feminino , Humanos , Imidazóis/síntese química , Camundongos , Camundongos Endogâmicos BALB C , Modelos Moleculares , Estrutura Molecular , Parasitemia/parasitologia , Ftalazinas/síntese química , Ftalazinas/química , Relação Estrutura-Atividade , Superóxido Dismutase/antagonistas & inibidores , Superóxido Dismutase/metabolismo , Tripanossomicidas/síntese química , Trypanosoma cruzi/enzimologia , Células Vero
15.
PLoS One ; 10(8): e0135238, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26252475

RESUMO

The role of microglia during neurodegeneration remains controversial. We investigated whether microglial cells have a neurotoxic or neuroprotective function in the retina. Retinal explants from 10-day-old mice were treated in vitro with minocycline to inhibit microglial activation, with LPS to increase microglial activation, or with liposomes loaded with clodronate (Lip-Clo) to deplete microglial cells. Flow cytometry was used to assess the viability of retinal cells in the explants and the TUNEL method to show the distribution of dead cells. The immunophenotypic and morphological features of microglia and their distribution were analyzed with flow cytometry and immunocytochemistry. Treatment of retinal explants with minocycline reduced microglial activation and simultaneously significantly decreased cell viability and increased the presence of TUNEL-labeled cell profiles. This treatment also prevented the migration of microglial cells towards the outer nuclear layer, where cell death was most abundant. The LPS treatment increased microglial activation but had no effect on cell viability or microglial distribution. Finally, partial microglial removal with Lip-Clo diminished the cell viability in the retinal explants, showing a similar effect to that of minocycline. Hence, cell viability is diminished in retinal explants cultured in vitro when microglial cells are removed or their activation is inhibited, indicating a neurotrophic role for microglia in this system.


Assuntos
Ácido Clodrônico/química , Microglia/citologia , Nervo Óptico/crescimento & desenvolvimento , Retina/crescimento & desenvolvimento , Animais , Animais Recém-Nascidos , Sobrevivência Celular , Ácido Clodrônico/administração & dosagem , Escherichia coli , Citometria de Fluxo , Imuno-Histoquímica , Imunofenotipagem , Lipopolissacarídeos/química , Lipossomos/química , Camundongos , Camundongos Endogâmicos C57BL , Minociclina/química , Neuroproteção , Nervo Óptico/efeitos dos fármacos , Técnicas de Cultura de Órgãos , Poli(ADP-Ribose) Polimerase-1 , Poli(ADP-Ribose) Polimerases/metabolismo , Retina/citologia , Retina/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo
16.
Invest Ophthalmol Vis Sci ; 56(2): 1301-9, 2015 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-25650421

RESUMO

PURPOSE: The purpose of this study was to investigate the incidence of DNA damage during postnatal development of the retina and the relationship between DNA damage and cell death. METHODS: DNA damage in the developing postnatal retina of C57BL/6 mice was assessed by determining the amounts of 8-hydroxy-2'-deoxyguanosine (8-OHdG), which is indicative of DNA oxidation and related to the formation of DNA single-strand breaks (SSBs), and phosphorylated histone H2AX (γ-H2AX), a marker of DNA double-strand breaks (DSBs). Poly(ADP-ribose) polymerase (PARP) activation was measured by ELISA and Western blotting. The location of γ-H2AX-positive and dying cells was determined by immunofluorescence and TUNEL assays. RESULTS: Oxidative DNA damage was maintained at low levels during high PARP activation between postnatal days 0 (P0) and P7. Phosphorylated histone H2AX gradually increased between P0 and P14 and decreased thereafter. Phosphorylated histone H2AX-positive cells with cell death morphology or TUNEL positivity were more abundant at P7 than at P14. CONCLUSIONS: Oxidative DNA damage in postnatal retina increases during development. It is low during the first postnatal week when PARP-1 activity is high but increases thereafter. The rise in DSBs when PARP activity is downregulated may be attributable to accumulated oxidative damage and SSBs. At P7 and P14, γ-H2AX-positive cells are repairing naturally occurring DNA damage, but some are dying (mostly at P7), probably due to an accumulation of irreparable DNA damage.


Assuntos
Dano ao DNA/genética , DNA/genética , Regulação da Expressão Gênica no Desenvolvimento , Histonas/genética , Poli Adenosina Difosfato Ribose/metabolismo , Poli(ADP-Ribose) Polimerases/genética , Retina/crescimento & desenvolvimento , Animais , Animais Recém-Nascidos , Apoptose , Western Blotting , Ativação Enzimática , Ensaio de Imunoadsorção Enzimática , Histonas/biossíntese , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Camundongos , Camundongos Endogâmicos C57BL , Poli(ADP-Ribose) Polimerase-1 , Poli(ADP-Ribose) Polimerases/biossíntese
17.
PLoS One ; 9(8): e106048, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25170849

RESUMO

Inducible nitric oxide synthase (iNOS), which produce large amounts of nitric oxide (NO), is induced in macrophages and microglia in response to inflammatory mediators such as LPS and cytokines. Although iNOS is mainly expressed by microglia that become activated in different pathological and experimental situations, it was recently reported that undifferentiated amoeboid microglia can also express iNOS during normal development. The aim of this study was to investigate the pattern of iNOS expression in microglial cells during normal development and after their activation with LPS by using the quail retina as model. iNOS expression was analyzed by iNOS immunolabeling, western-blot, and RT-PCR. NO production was determined by using DAR-4M AM, a reliable fluorescent indicator of subcellular NO production by iNOS. Embryonic, postnatal, and adult in situ quail retinas were used to analyze the pattern of iNOS expression in microglial cells during normal development. iNOS expression and NO production in LPS-treated microglial cells were investigated by an in vitro approach based on organotypic cultures of E8 retinas, in which microglial cell behavior is similar to that of the in situ retina, as previously demonstrated in our laboratory. We show here that amoeboid microglia in the quail retina express iNOS during normal development. This expression is stronger in microglial cells migrating tangentially in the vitreal part of the retina and is downregulated, albeit maintained, when microglia differentiate and become ramified. LPS treatment of retina explants also induces changes in the morphology of amoeboid microglia compatible with their activation, increasing their lysosomal compartment and upregulating iNOS expression with a concomitant production of NO. Taken together, our findings demonstrate that immature microglial cells express iNOS during normal development, suggesting a certain degree of activation. Furthermore, LPS treatment induces overactivation of amoeboid microglia, resulting in a significant iNOS upregulation.


Assuntos
Proteínas Aviárias/metabolismo , Microglia/enzimologia , Óxido Nítrico Sintase Tipo II/metabolismo , Retina/enzimologia , Animais , Animais Recém-Nascidos , Proteínas Aviárias/genética , Western Blotting , Coturnix , Regulação da Expressão Gênica no Desenvolvimento , Regulação Enzimológica da Expressão Gênica , Lipopolissacarídeos/farmacologia , Microglia/efeitos dos fármacos , Microscopia Confocal , Óxido Nítrico Sintase Tipo II/genética , Retina/embriologia , Retina/crescimento & desenvolvimento , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Técnicas de Cultura de Tecidos
18.
Exp Eye Res ; 121: 42-57, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24582572

RESUMO

Organotypic cultures of retinal explants allow the detailed analysis of microglial cells in a cellular microenvironment similar to that in the in situ retina, with the advantage of easy experimental manipulation. However, the in vitro culture causes changes in the retinal cytoarchitecture and induces a microglial response that may influence the results of these manipulations. The purpose of this study was to analyze the influence of the retinal age on changes in retinal cytoarchitecture, cell viability and death, and microglial phenotype and distribution throughout the in vitro culture of developing and adult retina explants. Explants from developing (3 and 10 postnatal days, P3 and P10) and adult (P60) mouse retinas were cultured for up to 10 days in vitro (div). Dead or dying cells were recognized by TUNEL staining, cell viability was determined by flow cytometry, and the numbers and distribution patterns of microglial cells were studied by flow cytometry and immunocytochemistry, respectively. The retinal cytoarchitecture was better preserved at prolonged culture times (10 div) in P10 retina explants than in P3 or adult explants. Particular patterns of cell viability and death were observed at each age: in general, explants from developing retinas showed higher cell viability and lower density of TUNEL-positive profiles versus adult retinas. The proportion of microglial cells relative to the whole population of retinal cells was higher in explants fixed immediately after their dissection (i.e., non-cultured) from adult retinas than in those from developing retinas. This proportion was always higher in non-cultured explants than in explants at 10 div, suggesting the death of some microglial cells during the culture. Activation of microglial cells, as revealed by their phenotypical appearance, was observed in both developing and adult retina explants from the beginning of the culture. Immunofluorescence with the anti-CD68 antibody showed that some activated microglial cells were CD68-positive but others were CD68-negative. Flow cytometry using CD68-labeling revealed that the percentage of CD68-positive microglial cells was much higher in developing than in adult retina explants, despite the activation of microglia in both types of explants, indicating that CD68-labeling was more closely related to the maturity degree of microglia than to their activation. Some swollen activated microglial cells entered the outer nuclear layer in developing and adult cultured retinal explants, whereas this layer was devoid of microglia in non-cultured explants. There was no apparent correlation between the distribution of microglia and that of TUNEL-labeled profiles. However, some swollen activated microglial cells in the outer and inner nuclear layers engulfed clusters of cell nuclei that were negative or weakly positive for TUNEL. This engulfment activity of microglia mimicked that observed in degenerative pathologies of the retina. We conclude that organotypic cultures from developing retinas show a higher rate of cell viability and better preservation of the normal cytoarchitecture in comparison to those obtained from adult retinas. In addition, the features of microglial response in cultured retinal explants show them to be a useful model for studying interactions between microglial cells and degenerating neurons in retinal diseases.


Assuntos
Envelhecimento/fisiologia , Microglia/citologia , Retina/crescimento & desenvolvimento , Animais , Animais Recém-Nascidos , Antígeno CD11b/metabolismo , Morte Celular/fisiologia , Sobrevivência Celular/fisiologia , Citometria de Fluxo , Marcação In Situ das Extremidades Cortadas , Antígenos Comuns de Leucócito/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Técnicas de Cultura de Órgãos , Retina/metabolismo
19.
PLoS One ; 7(4): e36243, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22558402

RESUMO

Both proNGF and the neurotrophin receptor p75 (p75(NTR)) are known to regulate photoreceptor cell death caused by exposure of albino mice to intense illumination. ProNGF-induced apoptosis requires the participation of sortilin as a necessary p75(NTR) co-receptor, suggesting that sortilin may participate in the photoreceptor degeneration triggered by intense lighting. We report here that light-exposed albino mice showed sortilin, p75(NTR), and proNGF expression in the outer nuclear layer, the retinal layer where photoreceptor cell bodies are located. In addition, cone progenitor-derived 661W cells subjected to intense illumination expressed sortilin and p75(NTR) and released proNGF into the culture medium. Pharmacological blockade of sortilin with either neurotensin or the "pro" domain of proNGF (pro-peptide) favored the survival of 661W cells subjected to intense light. In vivo, the pro-peptide attenuated retinal cell death in light-exposed albino mice. We propose that an auto/paracrine proapoptotic mechanism based on the interaction of proNGF with the receptor complex p75(NTR)/sortilin participates in intense light-dependent photoreceptor cell death. We therefore propose sortilin as a putative target for intervention in hereditary retinal dystrophies.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Luz , Células Fotorreceptoras/metabolismo , Células Fotorreceptoras/efeitos da radiação , Proteínas Adaptadoras de Transporte Vesicular/antagonistas & inibidores , Proteínas Adaptadoras de Transporte Vesicular/genética , Animais , Morte Celular/efeitos dos fármacos , Morte Celular/efeitos da radiação , Linhagem Celular , Relação Dose-Resposta à Radiação , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos da radiação , Glutationa Transferase/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Fator de Crescimento Neural/metabolismo , Neurotensina/farmacologia , Células Fotorreceptoras/citologia , Células Fotorreceptoras/efeitos dos fármacos , Precursores de Proteínas/metabolismo , Receptor de Fator de Crescimento Neural/metabolismo
20.
Invest Ophthalmol Vis Sci ; 52(10): 7445-54, 2011 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-21705688

RESUMO

PURPOSE: Poly(ADP-ribose) polymerase (PARP)-1 is a nuclear enzyme that transfers ADP-ribose units (PAR polymer) to nuclear proteins and has been implicated in caspase-independent cell death in different models of retinal degeneration. The involvement of PARP-1 in cell death occurring during normal postnatal development of the mouse retina was investigated. In addition, the expression of apoptosis-inducing factor (AIF), a caspase-independent cell death mediator, was explored because PARP-1 activation has been related to the translocation of a 57-kDa form of AIF into the cell nucleus. METHODS: Cell death was determined in retinas of developing mice by both ELISA and TUNEL. PARP-1, PAR, and AIF were analyzed by immunocytochemistry and immunoblotting. Quantification of PARP-1 mRNA levels was also performed by real-time PCR. RESULTS: PARP-1 upregulation and PAR polymer formation, indicative of PARP-1 activity, were observed during the first postnatal week simultaneously with the presence of abundant dying cells, some of which were not associated with active caspase-3. PARP-1 was downregulated and PARP-1 activity progressively declined in the retina during subsequent postnatal development, coinciding with the decrease in cell death. Truncated AIF (57 kDa) was present in the retina during the first postnatal week, gradually decreasing thereafter, and had a nuclear localization in some cells, which also showed strong PAR polymer nuclear staining. CONCLUSIONS: These results show that a caspase-independent cell death pathway exists during the normal development of the mouse retina and suggest that PARP-1 participates in this cell death pathway by mediating AIF translocation to the cell nucleus.


Assuntos
Apoptose/fisiologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Poli(ADP-Ribose) Polimerases/genética , Retina/enzimologia , Retina/crescimento & desenvolvimento , Animais , Animais Recém-Nascidos , Fator de Indução de Apoptose/metabolismo , Western Blotting , Ensaio de Imunoadsorção Enzimática , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Nucleossomos , Poli(ADP-Ribose) Polimerase-1 , Poli Adenosina Difosfato Ribose/metabolismo , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...