Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 91(4): 045003, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32357757

RESUMO

The Laser Interferometer Space Antenna Pathfinder (LPF) main observable, labeled Δg, is the differential force per unit mass acting on the two test masses under free fall conditions after the contribution of all non-gravitational forces has been compensated. At low frequencies, the differential force is compensated by an applied electrostatic actuation force, which then must be subtracted from the measured acceleration to obtain Δg. Any inaccuracy in the actuation force contaminates the residual acceleration. This study investigates the accuracy of the electrostatic actuation system and its impact on the LPF main observable. It is shown that the inaccuracy is mainly caused by the rounding errors in the waveform processing and also by the random error caused by the analog to digital converter random noise in the control loop. Both errors are one order of magnitude smaller than the resolution of the commanded voltages. We developed a simulator based on the LPF design to compute the close-to-reality actuation voltages and, consequently, the resulting actuation forces. The simulator is applied during post-processing the LPF data.

2.
Phys Rev Lett ; 123(11): 111101, 2019 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-31573236

RESUMO

We report on the results of the LISA Pathfinder (LPF) free-fall mode experiment, in which the control force needed to compensate the quasistatic differential force acting on two test masses is applied intermittently as a series of "impulse" forces lasting a few seconds and separated by roughly 350 s periods of true free fall. This represents an alternative to the normal LPF mode of operation in which this balancing force is applied continuously, with the advantage that the acceleration noise during free fall is measured in the absence of the actuation force, thus eliminating associated noise and force calibration errors. The differential acceleration noise measurement presented here with the free-fall mode agrees with noise measured with the continuous actuation scheme, representing an important and independent confirmation of the LPF result. An additional measurement with larger actuation forces also shows that the technique can be used to eliminate actuation noise when this is a dominant factor.

3.
Phys Rev Lett ; 120(6): 061101, 2018 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-29481269

RESUMO

In the months since the publication of the first results, the noise performance of LISA Pathfinder has improved because of reduced Brownian noise due to the continued decrease in pressure around the test masses, from a better correction of noninertial effects, and from a better calibration of the electrostatic force actuation. In addition, the availability of numerous long noise measurement runs, during which no perturbation is purposely applied to the test masses, has allowed the measurement of noise with good statistics down to 20 µHz. The Letter presents the measured differential acceleration noise figure, which is at (1.74±0.05) fm s^{-2}/sqrt[Hz] above 2 mHz and (6±1)×10 fm s^{-2}/sqrt[Hz] at 20 µHz, and discusses the physical sources for the measured noise. This performance provides an experimental benchmark demonstrating the ability to realize the low-frequency science potential of the LISA mission, recently selected by the European Space Agency.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...