Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 290(38): 22880-9, 2015 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-26198638

RESUMO

In the yeast Saccharomyces cerevisiae, the essential nuclear helicase Sen1 is required for efficient termination of transcription of short noncoding RNA genes by RNA polymerase II. However, the mechanism by which Sen1 promotes transcription termination is not known. Prior biochemical studies on the Sen1 homolog from Schizosaccharomyces pombe showed that it can bind and unwind both DNA and RNA, but the S. pombe protein is not essential and has not been demonstrated to function in transcription. Furthermore, Sen1 from either yeast has not previously been expressed as a recombinant protein, due to its large molecular mass (252 kDa in S. cerevisiae). Here, we report the purification and characterization of the 89-kDa S. cerevisiae Sen1 helicase domain (Sen1-HD) produced in Escherichia coli. Sen1-HD binds single-stranded RNA and DNA with similar affinity in the absence of ATP, but it binds RNA more stably than DNA in the presence of ATP, apparently due to a slower translocation rate on RNA. Translocation occurs in the 5' to 3' direction, as for the S. pombe protein. When purified from E. coli at a moderate salt concentration, Sen1-HD was associated with short RNAs that are enriched for the trinucleotide repeat (CAN)4. We propose that Sen1 binds to RNAs and prevents their stable pairing with DNA, consistent with in vivo studies by others showing increased R-loop (RNA/DNA hybrid) formation when Sen1 activity is impaired by mutations. Our results are consistent with a model in which Sen1 promotes transcription termination by resolving R-loops.


Assuntos
DNA Helicases/química , DNA Fúngico/química , RNA Helicases/química , RNA Fúngico/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimologia , DNA Helicases/genética , DNA Helicases/metabolismo , DNA Fúngico/genética , DNA Fúngico/metabolismo , Estrutura Terciária de Proteína , RNA Helicases/genética , RNA Helicases/metabolismo , RNA Fúngico/genética , RNA Fúngico/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Especificidade por Substrato/fisiologia
2.
Genes Dev ; 26(23): 2634-46, 2012 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-23207918

RESUMO

Escherichia coli DksA is a transcription factor that binds to RNA polymerase (RNAP) without binding to DNA, destabilizing RNAP-promoter interactions, sensitizing RNAP to the global regulator ppGpp, and regulating transcription of several hundred target genes, including those encoding rRNA. Previously, we described promoter sequences and kinetic properties that account for DksA's promoter specificity, but how DksA exerts its effects on RNAP has remained unclear. To better understand DksA's mechanism of action, we incorporated benzoyl-phenylalanine at specific positions in DksA and mapped its cross-links to RNAP, constraining computational docking of the two proteins. The resulting evidence-based model of the DksA-RNAP complex as well as additional genetic and biochemical approaches confirmed that DksA binds to the RNAP secondary channel, defined the orientation of DksA in the channel, and predicted a network of DksA interactions with RNAP that includes the rim helices and the mobile trigger loop (TL) domain. Engineered cysteine substitutions in the TL and DksA coiled-coil tip generated a disulfide bond between them, and the interacting residues were absolutely required for DksA function. We suggest that DksA traps the TL in a conformation that destabilizes promoter complexes, an interaction explaining the requirement for the DksA tip and its effects on transcription.


Assuntos
RNA Polimerases Dirigidas por DNA/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Regulação Bacteriana da Expressão Gênica , RNA Polimerases Dirigidas por DNA/química , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Modelos Moleculares , Fenilalanina/análogos & derivados , Fenilalanina/metabolismo , Regiões Promotoras Genéticas/genética , Ligação Proteica , Estrutura Terciária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo
3.
Nucleic Acids Res ; 39(17): 7837-47, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21653550

RESUMO

The essential splicing factor Prp24 contains four RNA Recognition Motif (RRM) domains, and functions to anneal U6 and U4 RNAs during spliceosome assembly. Here, we report the structure and characterization of the C-terminal RRM4. This domain adopts a novel non-canonical RRM fold with two additional flanking α-helices that occlude its ß-sheet face, forming an occluded RRM (oRRM) domain. The flanking helices form a large electropositive surface. oRRM4 binds to and unwinds the U6 internal stem loop (U6 ISL), a stable helix that must be unwound during U4/U6 assembly. NMR data indicate that the process starts with the terminal base pairs of the helix and proceeds toward the loop. We propose a mechanistic and structural model of Prp24's annealing activity in which oRRM4 functions to destabilize the U6 ISL during U4/U6 assembly.


Assuntos
RNA Nuclear Pequeno/metabolismo , Ribonucleoproteínas Nucleares Pequenas/química , Proteínas de Saccharomyces cerevisiae/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Sítios de Ligação , Sequência Conservada , Modelos Moleculares , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
RNA ; 16(4): 792-804, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20181740

RESUMO

U6 RNA plays a critical role in pre-mRNA splicing. Assembly of U6 into the spliceosome requires a significant structural rearrangement and base-pairing with U4 RNA. In the yeast Saccharomyces cerevisiae, this process requires the essential splicing factor Prp24. We present the characterization and structure of a complex containing one of Prp24's four RNA recognition motif (RRM) domains, RRM2, and a fragment of U6 RNA. NMR methods were used to identify the preferred U6 binding sequence of RRM2 (5'-GAGA-3'), measure the affinity of the interaction, and solve the structure of RRM2 bound to the hexaribonucleotide AGAGAU. Interdomain contacts observed between RRM2 and RRM3 in a crystal structure of the free protein are not detectable in solution. A structural model of RRM1 and RRM2 bound to a longer segment of U6 RNA is presented, and a partial mechanism for Prp24's annealing activity is proposed.


Assuntos
RNA Nuclear Pequeno/química , RNA Nuclear Pequeno/metabolismo , Ribonucleoproteínas Nucleares Pequenas/química , Proteínas de Saccharomyces cerevisiae/química , Sequência de Bases , Sítios de Ligação , Sequência Conservada , DNA Helicases/química , DNA Helicases/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Estrutura Terciária de Proteína , RNA Fúngico/química , RNA Fúngico/metabolismo , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Ribonucleosídeo Difosfato Redutase/química , Ribonucleosídeo Difosfato Redutase/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
Biomol NMR Assign ; 3(2): 227-30, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19693704

RESUMO

Saccharomyces cerevisiae Prp24 is an essential RNA binding protein involved in pre-mRNA splicing. Nearly complete backbone and side chain resonance assignments have been obtained for the second RNA recognition motif (RRM) of Prp24 (RRM2, residues M114-E197) both in isolation and bound to a six nucleotide fragment of U6 RNA (AGAGAU). In addition, nearly complete backbone assignments have been made for a Prp24 construct spanning the second and third RRMs (RRM23, residues M114-K290), both free and bound to AGAGAU.


Assuntos
RNA/química , RNA/metabolismo , Ribonucleoproteínas Nucleares Pequenas/química , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Motivos de Aminoácidos , Sequência de Bases , Ressonância Magnética Nuclear Biomolecular , Estrutura Terciária de Proteína , RNA/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...