Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cell Infect Microbiol ; 14: 1353057, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38495651

RESUMO

Introduction: The global evolution of resistance to Artemisinin-based Combination Therapies (ACTs) by malaria parasites, will severely undermine our ability to control this devastating disease. Methods: Here, we have used whole genome sequencing to characterize the genetic variation in the experimentally evolved Plasmodium chabaudi parasite clone AS-ATNMF1, which is resistant to artesunate + mefloquine. Results and discussion: Five novel single nucleotide polymorphisms (SNPs) were identified, one of which was a previously undescribed E738K mutation in a 26S proteasome subunit that was selected for under artesunate pressure (in AS-ATN) and retained in AS-ATNMF1. The wild type and mutated three-dimensional (3D) structure models and molecular dynamics simulations of the P. falciparum 26S proteasome subunit Rpn2 suggested that the E738K mutation could change the toroidal proteasome/cyclosome domain organization and change the recognition of ubiquitinated proteins. The mutation in the 26S proteasome subunit may therefore contribute to altering oxidation-dependent ubiquitination of the MDR-1 and/or K13 proteins and/or other targets, resulting in changes in protein turnover. In light of the alarming increase in resistance to artemisin derivatives and ACT partner drugs in natural parasite populations, our results shed new light on the biology of resistance and provide information on novel molecular markers of resistance that may be tested (and potentially validated) in the field.


Assuntos
Antimaláricos , Malária Falciparum , Parasitos , Animais , Artesunato/farmacologia , Artesunato/uso terapêutico , Mefloquina , Antimaláricos/farmacologia , Parasitos/genética , Malária Falciparum/parasitologia , Mutação , Sequenciamento Completo do Genoma , Plasmodium falciparum/genética
2.
Bioinform Adv ; 2(1): vbac064, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36699415

RESUMO

Summary: Accessing the collection of perturbed gene expression profiles, such as the LINCS L1000 connectivity map, is usually performed at the individual dataset level, followed by a summary performed by counting individual hits for each perturbagen. With the metaLINCS R package, we present an alternative approach that combines rank correlation and gene set enrichment analysis to identify meta-level enrichment at the perturbagen level and, in the case of drugs, at the mechanism of action level. This significantly simplifies the interpretation and highlights overarching themes in the data. We demonstrate the functionality of the package and compare its performance against those of three currently used approaches. Availability and implementation: metaLINCS is released under GPL3 license. Source code and documentation are freely available on GitHub (https://github.com/bigomics/metaLINCS). Supplementary information: Supplementary data are available at Bioinformatics Advances online.

3.
Pharmgenomics Pers Med ; 14: 335-347, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33758532

RESUMO

PURPOSE: CYP2B6 liver enzyme metabolizes the two non-nucleoside reverse transcriptase inhibitors Efavirenz (EFV) and Nevirapine (NVP) used in the antiretroviral therapy (ART) regimens for HIV-infected individuals. Polymorphisms of the CYP2B6 gene influence drug levels in plasma and possibly virological outcomes. The aim of this study was to explore the potential impact of CYP2B6 genotype and haplotype variation on the risk of developing EFV/NVP drug resistance mutations (DRMs) in HIV-1 patients receiving EFV-/NVP-containing regimens in Botswana. PATIENTS AND METHODS: Participants were a sub-sample of a larger study (Tshepo study) conducted in Gaborone, Botswana, among HIV-infected individuals taking EFV/NVP containing ART. Study samples were retrieved and assigned to cases (with DRMs) and controls (without DRMs). Four single-nucleotide polymorphisms (SNPs) in the CYP2B6 gene (-82T>C; 516G>T; 785A>G; 983T>C) were genotyped, the haplotypes reconstructed, and the metabolic score assigned. The possible association between drug resistance and several independent factors (baseline characteristics and CYP2B6 genotypes) was assessed by Binary Logistic Regression (BLR) analysis. EFV/NVP resistance status and CYP2B6 haplotypes were also analyzed using Z-test, chi-square and Fisher's exact test statistics. RESULTS: Two hundred and twenty-seven samples were analysed (40 with DRMs, 187 without DRMs). BLR analysis showed an association between EFV/NVP resistance and CYP2B6 516G allele (OR: 2.26; 95% CI: 1.27-4.01; P=0.005). Moreover, haplotype analysis revealed that the proportion of EFV/NVP-resistant infections was higher among CYP2B6 fast than extensive/slow metabolizers (30.8% vs 16.8%; P=0.035), with the 516G allele more represented in the haplotypes of fast than extensive/slow metabolizers (100.0% vs 53.8%; P<0.001). CONCLUSION: We demonstrated that the CYP2B6 516G allele, and even more when combined in fast metabolic haplotypes, is associated with the presence of EFV/NVP resistance, strengthening the need to assess the CYP2B6 genetic profiles in HIV-infected patients in order to improve the virologic outcomes of NNRTI containing ART.

4.
Commun Biol ; 3(1): 656, 2020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-33168940

RESUMO

Haemonchus contortus is a globally distributed and economically important gastrointestinal pathogen of small ruminants and has become a key nematode model for studying anthelmintic resistance and other parasite-specific traits among a wider group of parasites including major human pathogens. Here, we report using PacBio long-read and OpGen and 10X Genomics long-molecule methods to generate a highly contiguous 283.4 Mbp chromosome-scale genome assembly including a resolved sex chromosome for the MHco3(ISE).N1 isolate. We show a remarkable pattern of conservation of chromosome content with Caenorhabditis elegans, but almost no conservation of gene order. Short and long-read transcriptome sequencing allowed us to define coordinated transcriptional regulation throughout the parasite's life cycle and refine our understanding of cis- and trans-splicing. Finally, we provide a comprehensive picture of chromosome-wide genetic diversity both within a single isolate and globally. These data provide a high-quality comparison for understanding the evolution and genomics of Caenorhabditis and other nematodes and extend the experimental tractability of this model parasitic nematode in understanding helminth biology, drug discovery and vaccine development, as well as important adaptive traits such as drug resistance.


Assuntos
Genoma Helmíntico/genética , Haemonchus/genética , Modelos Biológicos , Transcriptoma/genética , Animais , Caenorhabditis elegans/genética , Cromossomos/genética , Feminino , Genômica , Hemoncose/parasitologia , Haemonchus/metabolismo , Haemonchus/fisiologia , Humanos , Enteropatias Parasitárias/parasitologia , Estágios do Ciclo de Vida/genética , Masculino
5.
NAR Genom Bioinform ; 2(1): lqz019, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33575569

RESUMO

As the cost of sequencing drops rapidly, the amount of 'omics data increases exponentially, making data visualization and interpretation-'tertiary' analysis a bottleneck. Specialized analytical tools requiring technical expertise are available. However, consolidated and multi-faceted tools that are easy to use for life scientists is highly needed and currently lacking. Here we present Omics Playground, a user-friendly and interactive self-service bioinformatics platform for the in-depth analysis, visualization and interpretation of transcriptomics and proteomics data. It provides a large number of different tools in which special attention has been paid to single cell data. With Omics Playground, life scientists can easily perform complex data analysis and visualization without coding, and significantly reduce the time to discovery.

6.
Sci Rep ; 9(1): 17594, 2019 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-31772378

RESUMO

Parasitic nematodes transition between dramatically different free-living and parasitic stages, with correctly timed development and migration crucial to successful completion of their lifecycle. However little is known of the mechanisms controlling these transitions. microRNAs (miRNAs) negatively regulate gene expression post-transcriptionally and regulate development of diverse organisms. Here we used microarrays to determine the expression profile of miRNAs through development and in gut tissue of the pathogenic nematode Haemonchus contortus. Two miRNAs, mir-228 and mir-235, were enriched in infective L3 larvae, an arrested stage analogous to Caenorhabditis elegans dauer larvae. We hypothesized that these miRNAs may suppress development and maintain arrest. Consistent with this, inhibitors of these miRNAs promoted H. contortus development from L3 to L4 stage, while genetic deletion of C. elegans homologous miRNAs reduced dauer arrest. Epistasis studies with C. elegans daf-2 mutants showed that mir-228 and mir-235 synergise with FOXO transcription factor DAF-16 in the insulin signaling pathway. Target prediction suggests that these miRNAs suppress metabolic and transcription factor activity required for development. Our results provide novel insight into the expression and functions of specific miRNAs in regulating nematode development and identify miRNAs and their target genes as potential therapeutic targets to limit parasite survival within the host.


Assuntos
Haemonchus/genética , MicroRNAs/biossíntese , RNA de Helmintos/biossíntese , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Colestenos/farmacologia , Feminino , Deleção de Genes , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Ontologia Genética , Haemonchus/efeitos dos fármacos , Haemonchus/crescimento & desenvolvimento , Larva , Masculino , MicroRNAs/genética , RNA de Helmintos/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptor de Insulina/genética , Especificidade da Espécie
7.
Int J Parasitol ; 49(11): 847-858, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31525371

RESUMO

Differential expression analysis between parasitic nematode strains is commonly used to implicate candidate genes in anthelmintic resistance or other biological functions. We have tested the hypothesis that the high genetic diversity of an organism such as Haemonchus contortus could complicate such analyses. First, we investigated the extent to which sequence polymorphism affects the reliability of differential expression analysis between the genetically divergent H. contortus strains MHco3(ISE), MHco4(WRS) and MHco10(CAVR). Using triplicates of 20 adult female worms from each population isolated under parallel experimental conditions, we found that high rates of sequence polymorphism in RNAseq reads were associated with lower efficiency read mapping to gene models under default TopHat2 parameters, leading to biased estimates of inter-strain differential expression. We then showed it is possible to largely compensate for this bias by optimising the read mapping single nucleotide polymorphism (SNP) allowance and filtering out genes with particularly high single nucleotide polymorphism rates. Once the sequence polymorphism biases were removed, we then assessed the genuine transcriptional diversity between the strains, finding ≥824 differentially expressed genes across all three pairwise strain comparisons. This high level of inter-strain transcriptional diversity not only suggests substantive inter-strain phenotypic variation but also highlights the difficulty in reliably associating differential expression of specific genes with phenotypic differences. To provide a practical example, we analysed two gene families of potential relevance to ivermectin drug resistance; the ABC transporters and the ligand-gated ion channels (LGICs). Over half of genes identified as differentially expressed using default TopHat2 parameters were shown to be an artifact of sequence polymorphism differences. This work illustrates the need to account for sequence polymorphism in differential expression analysis. It also demonstrates that a large number of genuine transcriptional differences can occur between H. contortus strains and these must be considered before associating the differential expression of specific genes with phenotypic differences between strains.


Assuntos
Perfilação da Expressão Gênica/métodos , Perfilação da Expressão Gênica/normas , Variação Genética , Haemonchus/genética , Animais , Anti-Helmínticos/farmacologia , Mapeamento Cromossômico/métodos , Mapeamento Cromossômico/normas , Biologia Computacional/métodos , Biologia Computacional/normas , Resistência a Medicamentos , Haemonchus/efeitos dos fármacos , Ivermectina/farmacologia , Análise de Sequência de RNA/métodos , Análise de Sequência de RNA/normas
8.
Virus Genes ; 55(5): 630-642, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31292858

RESUMO

Japanese encephalitis virus (JEV) exerts a profound burden of viral encephalitis. We have investigated the differentially expressed transcripts in the neuronal transcriptome during JEV infection by RNA sequencing (RNA-Seq) of virus-infected SH-SY5Y human neuroblastoma cells. Gene ontology analysis revealed significant enrichment from two main pathways: endoplasmic reticulum (ER)-nucleus signaling (P value: 5.75E-18; false discovery rate [FDR] 3.11E-15) and the ER unfolded protein response (P value: 7.58E-18; FDR 3.11E-15). qPCR validation showed significant upregulation and differential expression (P < 0.01) of ER stress-signaling transcripts (SESN2, TRIB3, DDIT3, DDIT4, XBP1, and ATF4) at 24 h post-infection for both low (LN) and high (HN) neurovirulence JEV strains. Immunoblot analysis following JEV infection of SH-SY5Y cells showed an increase in levels of SESN2 protein following JEV infection. Similarly, Zika virus (MR766) infection of SH-SY5Y showed a titer-dependent increase in ER stress-signaling transcripts; however, this was absent or diminished for DDIT4 and ATF4, respectively, suggestive of differences in the induction of stress-response transcripts between flaviviruses. Interestingly, SLC7A11 and SLC3A2 mRNA were also both deregulated in JEV-infected SH-SY5Y cells and encode the two constituent subunits of the plasma membrane xCT amino acid antiporter that relieves oxidative stress by export of glutamate and import of cystine. Infection of SH-SY5Y and HEK293T cells by the JEV HN strain Sw/Mie/40/2004 lead to significant upregulation of the SLC7A11 mRNA to levels comparable to DDIT3. Our findings suggest upregulation of antioxidants including SESN2 and, also, the xCT antiporter occurs to counteract the oxidative stress elicited by JEV infection.


Assuntos
Vírus da Encefalite Japonesa (Espécie)/crescimento & desenvolvimento , Neurônios/patologia , Neurônios/virologia , Proteínas Nucleares/biossíntese , Regulação para Cima , Sistema y+ de Transporte de Aminoácidos/biossíntese , Linhagem Celular , Biologia Computacional , Perfilação da Expressão Gênica , Humanos
9.
BMC Genomics ; 20(1): 218, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30876405

RESUMO

BACKGROUND: Infections with helminths cause an enormous disease burden in billions of animals and plants worldwide. Large scale use of anthelmintics has driven the evolution of resistance in a number of species that infect livestock and companion animals, and there are growing concerns regarding the reduced efficacy in some human-infective helminths. Understanding the mechanisms by which resistance evolves is the focus of increasing interest; robust genetic analysis of helminths is challenging, and although many candidate genes have been proposed, the genetic basis of resistance remains poorly resolved. RESULTS: Here, we present a genome-wide analysis of two genetic crosses between ivermectin resistant and sensitive isolates of the parasitic nematode Haemonchus contortus, an economically important gastrointestinal parasite of small ruminants and a model for anthelmintic research. Whole genome sequencing of parental populations, and key stages throughout the crosses, identified extensive genomic diversity that differentiates populations, but after backcrossing and selection, a single genomic quantitative trait locus (QTL) localised on chromosome V was revealed to be associated with ivermectin resistance. This QTL was common between the two geographically and genetically divergent resistant populations and did not include any leading candidate genes, suggestive of a previously uncharacterised mechanism and/or driver of resistance. Despite limited resolution due to low recombination in this region, population genetic analyses and novel evolutionary models supported strong selection at this QTL, driven by at least partial dominance of the resistant allele, and that large resistance-associated haplotype blocks were enriched in response to selection. CONCLUSIONS: We have described the genetic architecture and mode of ivermectin selection, revealing a major genomic locus associated with ivermectin resistance, the most conclusive evidence to date in any parasitic nematode. This study highlights a novel genome-wide approach to the analysis of a genetic cross in non-model organisms with extreme genetic diversity, and the importance of a high-quality reference genome in interpreting the signals of selection so identified.


Assuntos
Resistência a Medicamentos , Evolução Molecular , Haemonchus/efeitos dos fármacos , Haemonchus/genética , Ivermectina/farmacologia , Metagenômica , Locos de Características Quantitativas , Animais , DNA de Helmintos , Variação Genética , Inseticidas/farmacologia
10.
PLoS Negl Trop Dis ; 13(2): e0006842, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30802245

RESUMO

To improve our knowledge on the epidemiological status of African trypanosomiasis, better tools are required to monitor Trypanosome genotypes circulating in both mammalian hosts and tsetse fly vectors. This is important in determining the diversity of Trypanosomes and understanding how environmental factors and control efforts affect Trypanosome evolution. We present a single test approach for molecular detection of different Trypanosome species and subspecies using newly designed primers to amplify the Internal Transcribed Spacer 1 region of ribosomal RNA genes, coupled to Illumina sequencing of the amplicons. The protocol is based on Illumina's widely used 16s bacterial metagenomic analysis procedure that makes use of multiplex PCR and dual indexing. Results from analysis of wild tsetse flies collected from Zambia and Zimbabwe show that conventional methods for Trypanosome species detection based on band size comparisons on gels is not always able to accurately distinguish between T. vivax and T. godfreyi. Additionally, this approach shows increased sensitivity in the detection of Trypanosomes at species level with the exception of the Trypanozoon subgenus. We identified subspecies of T. congolense, T. simiae, T. vivax, and T. godfreyi without the need for additional tests. Results show T. congolense Kilifi subspecies is more closely related to T. simiae than to other T. congolense subspecies. This agrees with previous studies using satellite DNA and 18s RNA analysis. While current classification does not list any subspecies for T. godfreyi, we observed two distinct clusters for these species. Interestingly, sequences matching T. congolense Tsavo (now classified as T. simiae Tsavo) clusters distinctly from other T. simiae Tsavo sequences suggesting the Nannomonas group is more divergent than currently thought thus the need for better classification criteria. This method presents a simple but comprehensive way of identification of Trypanosome species and subspecies-specific using one PCR assay for molecular epidemiology of trypanosomes.


Assuntos
DNA Espaçador Ribossômico/genética , Reação em Cadeia da Polimerase , Trypanosoma/classificação , Trypanosoma/genética , Moscas Tsé-Tsé/parasitologia , Animais , Primers do DNA/genética , DNA de Protozoário/genética , Técnicas de Genotipagem , Sequenciamento de Nucleotídeos em Larga Escala , RNA Ribossômico 18S/genética , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Análise de Sequência de DNA , Trypanosoma/isolamento & purificação , Tripanossomíase Africana/parasitologia
11.
Sci Rep ; 8(1): 4912, 2018 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-29559695

RESUMO

Identification of inter-individual variability for drug metabolism through cytochrome P450 2B6 (CYP2B6) enzyme is important for understanding the differences in clinical responses to malaria and HIV. This study evaluates the distribution of CYP2B6 alleles, haplotypes and inferred metabolic phenotypes among subjects with different ethnicity in Botswana. A total of 570 subjects were analyzed for CYP2B6 polymorphisms at position 516 G > T (rs3745274), 785 A > G (rs2279343) and 983 T > C (rs28399499). Samples were collected in three districts of Botswana where the population belongs to Bantu (Serowe/Palapye and Chobe) and San-related (Ghanzi) ethnicity. The three districts showed different haplotype composition according to the ethnic background but similar metabolic inferred phenotypes, with 59.12%, 34.56%, 2.10% and 4.21% of the subjects having, respectively, an extensive, intermediate, slow and rapid metabolic profile. The results hint at the possibility of a convergent adaptation of detoxifying metabolic phenotypes despite a different haplotype structure due to the different genetic background. The main implication is that, while there is substantial homogeneity of metabolic inferred phenotypes among the country, the response to drugs metabolized via CYP2B6 could be individually associated to an increased risk of treatment failure and toxicity. These are important facts since Botswana is facing malaria elimination and a very high HIV prevalence.


Assuntos
Citocromo P-450 CYP2B6/genética , Etnicidade , Genótipo , Infecções por HIV/tratamento farmacológico , Malária/tratamento farmacológico , Fármacos Anti-HIV/uso terapêutico , Antimaláricos/uso terapêutico , Botsuana/epidemiologia , Criança , Pré-Escolar , Frequência do Gene , Infecções por HIV/epidemiologia , Infecções por HIV/genética , Humanos , Inativação Metabólica/genética , Desequilíbrio de Ligação , Malária/epidemiologia , Malária/genética , Fenótipo , Polimorfismo de Nucleotídeo Único , Resultado do Tratamento
12.
Int J Parasitol ; 48(5): 395-402, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29534987

RESUMO

Some nematode species are economically important parasites of livestock, while others are important human pathogens causing some of the most important neglected tropical diseases. In both humans and animals, anthelmintic drug administration is the main control strategy, but the emergence of drug-resistant worms has stimulated the development of alternative control approaches. Among these, vaccination is considered to be a sustainable and cost effective strategy. Currently, Barbervax® for the ruminant strongylid Haemonchus contortus is the only registered subunit vaccine for a nematode parasite, although a vaccine for the human hookworm Necator americanus is undergoing clinical trials (HOOKVAC consortium). As both these vaccines comprise a limited number of proteins, there is potential for selection of nematodes with altered sequences or expression of the vaccine antigens. Here we compared the transcriptome of H. contortus populations from sheep vaccinated with Barbervax® with worms from control animals. Barbervax® antigens are native integral membrane proteins isolated from the brush border of the intestinal cells of the adult parasite and many of those are proteases. Our findings provide no evidence for changes in expression of genes encoding Barbervax® antigens in the surviving parasite populations. However, surviving parasites from vaccinated animals showed increased expression of other proteases and regulators of lysosome trafficking, and displayed up-regulated lipid storage and defecation abilities that may have circumvented the effect of the vaccine. Implications for other potential vaccines for human and veterinary nematodes are discussed.


Assuntos
Perfilação da Expressão Gênica , Necator americanus/metabolismo , Necatoríase/veterinária , Doenças dos Ovinos/parasitologia , Vacinas/imunologia , Animais , Necatoríase/prevenção & controle , Ovinos , Doenças dos Ovinos/prevenção & controle
13.
Parasitology ; 145(1): 41-54, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-27748213

RESUMO

The study of malaria in the laboratory relies on either the in vitro culture of human parasites, or the use of non-human malaria parasites in laboratory animals. In this review, we address the use of non-human primate malaria parasite species (NHPMPs) in laboratory research. We describe the features of the most commonly used NHPMPs, review their contribution to our understanding of malaria to date, and discuss their potential contribution to future studies.


Assuntos
Malária/parasitologia , Plasmodium/fisiologia , Primatas , Animais , Modelos Animais de Doenças , Malária/transmissão , Plasmodium/classificação , Plasmodium/genética
15.
Artigo em Inglês | MEDLINE | ID: mdl-29209592

RESUMO

Resistance to anthelmintic drugs is a major problem in the global fight against parasitic nematodes infecting humans and animals. While previous studies have identified mutations in drug target genes in resistant parasites, changes in the expression levels of both targets and transporters have also been reported. The mechanisms underlying these changes in gene expression are unresolved. Here, we take a novel approach to this problem by investigating the role of small regulatory RNAs in drug resistant strains of the important parasite Haemonchus contortus. microRNAs (miRNAs) are small (22 nt) non-coding RNAs that regulate gene expression by binding predominantly to the 3' UTR of mRNAs. Changes in miRNA expression have been implicated in drug resistance in a variety of tumor cells. In this study, we focused on two geographically distinct ivermectin resistant strains of H. contortus and two lines generated by multiple rounds of backcrossing between susceptible and resistant parents, with ivermectin selection. All four resistant strains showed significantly increased expression of a single miRNA, hco-miR-9551, compared to the susceptible strain. This same miRNA is also upregulated in a multi-drug-resistant strain of the related nematode Teladorsagia circumcincta. hco-miR-9551 is enriched in female worms, is likely to be located on the X chromosome and is restricted to clade V parasitic nematodes. Genes containing predicted binding sites for hco-miR-9551 were identified computationally and refined based on differential expression in a transcriptomic dataset prepared from the same drug resistant and susceptible strains. This analysis identified three putative target mRNAs, one of which, a CHAC domain containing protein, is located in a region of the H. contortus genome introgressed from the resistant parent. hco-miR-9551 was shown to interact with the 3' UTR of this gene by dual luciferase assay. This study is the first to suggest a role for miRNAs and the genes they regulate in drug resistant parasitic nematodes. miR-9551 also has potential as a biomarker of resistance in different nematode species.


Assuntos
Anti-Helmínticos/farmacologia , Resistência a Medicamentos/genética , Expressão Gênica , MicroRNAs/genética , Nematoides/genética , Animais , Biomarcadores , Resistência a Medicamentos/fisiologia , Feminino , Células HEK293 , Haemonchus/genética , Haemonchus/metabolismo , Humanos , Ivermectina/farmacologia , MicroRNAs/metabolismo , Nematoides/metabolismo , RNA Mensageiro/metabolismo
16.
PLoS Pathog ; 13(7): e1006447, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28704525

RESUMO

Identifying the genetic determinants of phenotypes that impact disease severity is of fundamental importance for the design of new interventions against malaria. Here we present a rapid genome-wide approach capable of identifying multiple genetic drivers of medically relevant phenotypes within malaria parasites via a single experiment at single gene or allele resolution. In a proof of principle study, we found that a previously undescribed single nucleotide polymorphism in the binding domain of the erythrocyte binding like protein (EBL) conferred a dramatic change in red blood cell invasion in mutant rodent malaria parasites Plasmodium yoelii. In the same experiment, we implicated merozoite surface protein 1 (MSP1) and other polymorphic proteins, as the major targets of strain-specific immunity. Using allelic replacement, we provide functional validation of the substitution in the EBL gene controlling the growth rate in the blood stages of the parasites.


Assuntos
Antígenos de Protozoários/genética , Malária/imunologia , Malária/parasitologia , Proteína 1 de Superfície de Merozoito/genética , Plasmodium yoelii/genética , Plasmodium yoelii/patogenicidade , Proteínas de Protozoários/genética , Receptores de Superfície Celular/genética , Antígenos de Protozoários/metabolismo , Eritrócitos/parasitologia , Interações Hospedeiro-Parasita , Humanos , Imunidade , Malária/genética , Proteína 1 de Superfície de Merozoito/metabolismo , Plasmodium yoelii/crescimento & desenvolvimento , Plasmodium yoelii/metabolismo , Polimorfismo de Nucleotídeo Único , Proteínas de Protozoários/metabolismo , Receptores de Superfície Celular/metabolismo , Virulência
17.
Biomaterials ; 137: 61-72, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28544973

RESUMO

The lipopeptide R4Pam2Cys is an agonist for toll-like receptor-2 (TLR2), a key pathogen-associated molecular pattern receptor expressed on many antigen-presenting cells such as dendritic cells (DCs). Electrostatic association of R4Pam2Cys with soluble protein antigens significantly enhances their immunogenicity and there is evidence to suggest that reducing the size of suitably adjuvanted-antigen complexes in solution may further improve their immunostimulatory capabilities. In this study, we investigated how incorporation of polyethylene glycol (PEG) into R4Pam2Cys affects the size, activity and efficacy of formed antigen-lipopeptide complexes. The presence of PEG was shown to increase solubility with a concomitant reduction in the particle size of vaccine formulations that was dependent on the length of PEG used. When compared to non-PEGylated R4Pam2Cys, vaccination of animals with antigen-complexed PEGylated R4Pam2Cys resulted not only in improvements in antibody production but significantly higher antigen-specific CD8+ T cell responses. Both lipopeptides exhibited similar in vitro capabilities to induce DC maturation, facilitate antigen uptake and presentation to T cells. Moreover, analyses of the transcriptomes obtained from DCs treated with either lipopeptide revealed a large number of commonly induced genes with similar transcript expression levels, suggesting that common signalling pathways and processes were engaged following activation by either lipopeptide. In vivo analysis however revealed that vaccination with antigen-complexed PEGylated R4Pam2Cys resulted in improved antigen presentation to T cells. These heightened responses were not attributed to prolonged antigen persistence but rather due to more rapid transportation of antigen from the injection site into the draining lymph nodes over a short period of time. Our results indicate that reducing the size of formed antigen-TLR2-agonist complexes by PEGylation does not compromise the activity of the agonist but in fact enhances its trafficking in vivo ultimately leading to improved humoral and cell-mediated immune responses.


Assuntos
Linfócitos T CD8-Positivos/efeitos dos fármacos , Portadores de Fármacos/química , Lipopeptídeos/química , Ovalbumina/metabolismo , Polietilenoglicóis/química , Receptor 2 Toll-Like/agonistas , Adjuvantes Imunológicos/metabolismo , Animais , Formação de Anticorpos , Apresentação de Antígeno , Linfócitos T CD8-Positivos/fisiologia , Proliferação de Células , Células Dendríticas/fisiologia , Liberação Controlada de Fármacos , Humanos , Imunidade Celular , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Ovalbumina/imunologia , Solubilidade , Propriedades de Superfície , Transcriptoma , Vacinas/administração & dosagem
18.
Infect Genet Evol ; 35: 122-6, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26247717

RESUMO

The prescription of patients' tailored anti-infectious treatments is the ultimate goal of pharmacogenetics/genomics applied to antimicrobial treatments, providing a basis for personalized medicine. Despite the efforts to screen Africans for alleles underlying defective metabolism for a panel of different drugs, still more research is necessary to clarify the interplay between host genetic variation and treatments' response. HIV is a major infectious disease in sub-Saharan African countries, and the main prescribed anti-HIV combination therapy includes efavirenz (EFV) or nevirapine (NVP). The two drugs are both mainly metabolised by cytochrome P450 2B6 liver enzyme (CYP2B6). Defective variants of CYP2B6 gene, leading to higher drug exposure with subsequent possible side effects and low compliance, are well known. However, little is known about CYP2B6 alleles in Cameroon where only one study was done on this subject. The main objective of the present work is to assess, in a subset of HIV-exposed subjects from Dschang in West Cameroon, the prevalence of two SNPs in the CYP2B6 gene: 516G>T (rs3745274) and 983T>C (rs28399499), both associated to a defective EFV and NVP metabolism. We analyzed 168 DNA samples collected during two cross-sectional surveys performed in Dschang, West Cameroon. In the population studied the observed allele frequencies of 516G>T and 983T>C were 44.35% (95%CI, 36.84-51.86%) and 12.80% (95%CI, 7.75-17.85%), respectively. Moreover, concerning the CYP2B6 expected phenotypes, 28.57% of the population showed a poor metaboliser phenotype, while 27.38% and 44.05% showed an extensive (wild-type) and an intermediate metaboliser phenotype, respectively. Here we found that an important fraction of the subjects is carrying EFV/NVP poor metaboliser alleles. Our findings could help to improve the knowledge about the previewed efficacy of anti-HIV drug therapy in Cameroon. Finally, we designed a new method of detection for the 983T>C genetic variation that can be applied in resource-limited laboratories.


Assuntos
Benzoxazinas/farmacocinética , População Negra/genética , Citocromo P-450 CYP2B6/genética , Infecções por HIV/tratamento farmacológico , Nevirapina/farmacocinética , Polimorfismo de Nucleotídeo Único , Adolescente , Adulto , Alcinos , Benzoxazinas/uso terapêutico , Camarões , Criança , Pré-Escolar , Estudos Transversais , Ciclopropanos , Frequência do Gene , Infecções por HIV/genética , Humanos , Lactente , Nevirapina/uso terapêutico , Medicina de Precisão , Adulto Jovem
19.
Int J Parasitol ; 45(4): 243-51, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25558056

RESUMO

Haemonchus contortus, a highly pathogenic and economically important parasitic nematode of sheep, is particularly adept at developing resistance to the anthelmintic drugs used in its treatment and control. The basis of anthelmintic resistance is poorly understood for many commonly used drugs with most research being focused on mechanisms involving drug targets or drug efflux. Altered or increased drug metabolism is a possible mechanism that has yet to receive much attention despite the clear role of xenobiotic metabolism in pesticide resistance in insects. The cytochrome P450s (CYPs) are a large family of drug-metabolising enzymes present in almost all living organisms, but for many years thought to be absent from parasitic nematodes. In this paper, we describe the CYP sequences encoded in the H. contortus genome and compare their expression in different parasite life-stages, sexes and tissues. We developed a novel real-time PCR approach based on partially assembled CYP sequences "tags" and confirmed findings in the subsequent draft genome with RNA-seq. Constitutive expression was highest in larval stages for the majority of CYPs, although higher expression was detected in the adult male or female for a small subset of genes. Many CYPs were expressed in the worm intestine. A number of H. contortus genes share high identity with Caenorhabditis elegans CYPs and the similarity in their expression profiles supports their classification as putative orthologues. Notably, H. contortus appears to lack the dramatic CYP subfamily expansions seen in C. elegans and other species, which are typical of CYPs with exogenous roles. However, a small group of H. contortus genes cluster with the C. elegans CYP34 and CYP35 subfamilies and may represent candidate xenobiotic metabolising genes in the parasite.


Assuntos
Sistema Enzimático do Citocromo P-450/biossíntese , Sistema Enzimático do Citocromo P-450/genética , Haemonchus/enzimologia , Haemonchus/crescimento & desenvolvimento , Animais , Caenorhabditis elegans/enzimologia , Caenorhabditis elegans/genética , Análise por Conglomerados , Biologia Computacional , Feminino , Perfilação da Expressão Gênica , Haemonchus/genética , Masculino , Filogenia , Reação em Cadeia da Polimerase em Tempo Real , Homologia de Sequência
20.
Genome Biol ; 14(8): R88, 2013 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-23985316

RESUMO

BACKGROUND: The small ruminant parasite Haemonchus contortus is the most widely used parasitic nematode in drug discovery, vaccine development and anthelmintic resistance research. Its remarkable propensity to develop resistance threatens the viability of the sheep industry in many regions of the world and provides a cautionary example of the effect of mass drug administration to control parasitic nematodes. Its phylogenetic position makes it particularly well placed for comparison with the free-living nematode Caenorhabditis elegans and the most economically important parasites of livestock and humans. RESULTS: Here we report the detailed analysis of a draft genome assembly and extensive transcriptomic dataset for H. contortus. This represents the first genome to be published for a strongylid nematode and the most extensive transcriptomic dataset for any parasitic nematode reported to date. We show a general pattern of conservation of genome structure and gene content between H. contortus and C. elegans, but also a dramatic expansion of important parasite gene families. We identify genes involved in parasite-specific pathways such as blood feeding, neurological function, and drug metabolism. In particular, we describe complete gene repertoires for known drug target families, providing the most comprehensive understanding yet of the action of several important anthelmintics. Also, we identify a set of genes enriched in the parasitic stages of the lifecycle and the parasite gut that provide a rich source of vaccine and drug target candidates. CONCLUSIONS: The H. contortus genome and transcriptome provide an essential platform for postgenomic research in this and other important strongylid parasites.


Assuntos
Antígenos de Helmintos/genética , Genes de Helmintos , Genoma Helmíntico , Haemonchus/genética , Filogenia , Transcriptoma , Animais , Anti-Helmínticos/farmacologia , Caenorhabditis elegans/classificação , Caenorhabditis elegans/genética , Resistência a Medicamentos/genética , Regulação da Expressão Gênica , Hemoncose/parasitologia , Hemoncose/veterinária , Haemonchus/classificação , Haemonchus/efeitos dos fármacos , Interações Hospedeiro-Parasita , Homologia de Sequência do Ácido Nucleico , Ovinos , Doenças dos Ovinos/parasitologia , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...