Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Med Res Rev ; 24(3): 299-324, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-14994366

RESUMO

This review discusses liposome/water lipophilicity in terms of the structure of liposomes, experimental methods, and information content. In a first part, the structural properties of the hydrophobic core and polar surface of liposomes are examined in the light of potential interactions with solute molecules. Particular emphasis is placed on the physicochemical properties of polar headgroups of lipids in liposomes. A second part is dedicated to three useful methods to study liposome/water partitioning, namely potentiometry, equilibrium dialysis, and (1)H-NMR relaxation rates. In each case, the principle and limitations of the method are discussed. The next part presents the structural information encoded in liposome/water lipophilicity, in other words the solutes' structural and physicochemical properties that determine their behavior and hence their partitioning in such systems. This presentation is based on a comparison between isotropic (i.e., solvent/water) and anisotropic (e.g., liposome/water) systems. An important factor to be considered is whether the anisotropic lipid phase is ionized or not. Three examples taken from the authors' laboratories are discussed to illustrate the factors or combinations thereof that govern liposome/water lipophilicity, namely (a) hydrophobic interactions alone, (b) hydrophobic and polar interactions, and (c) conformational effects plus hydrophobic and ionic interactions. The next part presents two studies taken from the field of QSAR to exemplify the use of liposome/water lipophilicity in structure-disposition and structure-activity relationships. In the conclusion, we summarize the interests and limitations of this technology and point to promising developments.


Assuntos
Lipossomos/química , Água/química , Fenômenos Químicos , Química Farmacêutica , Físico-Química , Diálise , Humanos , Interações Hidrofóbicas e Hidrofílicas , Espectroscopia de Ressonância Magnética , Conformação Molecular , Potenciometria , Relação Estrutura-Atividade
2.
Pharm Res ; 19(6): 729-37, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12134941

RESUMO

PURPOSE: To assess the effect of molecular factors influencing retention on immobilized artificial membrane (IAM) high-performance liquid chromatography columns compared to liposomal partitioning and traditional n-octanol/water partition coefficients. METHODS: IAM capacity factors were measured at pH 7.0 on an IAM.PC.DD2 stationary phase. Liposomal partitioning at pH 7.0 and n-octanol/water partition coefficients were measured using the pH metric method. Partitioning in egg-phosphatidylcholine (PhC) liposomes was also measured by equilibrium dialysis for a series of beta-blockers. RESULTS: For the ionized beta-blockers, potentiometry and equilibrium dialysis yielded consistent partitioning data. For relatively large bases. IAM retention correlated well with PhC liposome partitioning, hydrophobic forces being mainly involved. For more hydrophilic compounds and for heterogeneous solutes, in contrast, the balance between electrostatic and hydrophobic interactions was not the same in the two systems. Hydrogen bonding, an important factor in liposomes partitioning, played only a minor role in IAM retention. CONCLUSIONS: Partitioning in immobilized artificial membranes depends on size, hydrophobicity, and charge. When hydrophobic interactions dominate retention, IAM capacity factors are well correlated with liposomal partitioning. On the contary, for hydrophilic solutes, the two systems do not yield the same information and are not interchangeable.


Assuntos
1-Octanol/química , Lipossomos/química , Membranas Artificiais , Cromatografia Líquida de Alta Pressão/métodos , Interações Hidrofóbicas e Hidrofílicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...