Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sports Med ; 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38555307

RESUMO

BACKGROUND: Ultra-trail running races pose appreciable physiological challenges, particularly for glucose metabolism. Previous studies that yielded divergent results only measured glycaemia at isolated times. OBJECTIVES: We aimed to explore the impact of an ultra-endurance race on continuously measured glycaemia and to understand potential physiological mechanisms, as well as the consequences for performance and behavioural alertness. METHODS: Fifty-five athletes (78% men, 43.7 ± 9.6 years) ran a 156-km ultra-trail race (six 26-km laps, total elevation 6000 m). Participants wore a masked continuous glucose monitoring sensor from the day before the race until 10 days post-race. Blood was taken at rest, during refuelling stops after each lap, and after 24-h recovery. Running intensity (% heart rate reserve), performance (lap times), psychological stress, and behavioural alertness were explored. Linear mixed models and logistic regressions were carried out. RESULTS: No higher risk of hypo- or hyperglycaemia was observed during the exercise phases of the race (i.e. excluding stops for scientific measurements and refuelling) compared with resting values. Laps comprising a greater proportion of time spent at maximal aerobic intensity were nevertheless associated with more time > 180 mg/dL (P = 0.021). A major risk of hyperglycaemia appeared during the 48-h post-race period compared with pre-race (P < 0.05), with 31.9% of the participants spending time with values > 180 mg/dL during recovery versus 5.5% during resting. Changes in circulating insulin, cortisol, and free fatty acids followed profiles comparable with those usually observed during traditional aerobic exercise. However, creatine phosphokinase, and to a lesser extent lactate dehydrogenase, increased exponentially during the race (P < 0.001) and remained high at 24-h post-race (P < 0.001; respectively 43.6 and 1.8 times higher vs. resting). Glycaemic metrics did not influence physical performance or behavioural alertness. CONCLUSION: Ultra-endurance athletes were exposed to hyperglycaemia during the 48-h post-race period, possibly linked to muscle damage and inflammation. Strategies to mitigate muscle damage or subsequent inflammation before or after ultra-trail races could limit recovery hyperglycaemia and hence its related adverse health consequences. TRIAL REGISTRATION NUMBER: NCT05538442 2022-09-21 retrospectively registered.

2.
Nat Commun ; 12(1): 6398, 2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34737315

RESUMO

Machines enabled the Industrial Revolution and are central to modern technological progress: A machine's parts transmit forces, motion, and energy to one another in a predetermined manner. Today's engineering frontier, building artificial micromachines that emulate the biological machinery of living organisms, requires faithful assembly and energy consumption at the microscale. Here, we demonstrate the programmable assembly of active particles into autonomous metamachines using optical templates. Metamachines, or machines made of machines, are stable, mobile and autonomous architectures, whose dynamics stems from the geometry. We use the interplay between anisotropic force generation of the active colloids with the control of their orientation by local geometry. This allows autonomous reprogramming of active particles of the metamachines to achieve multiple functions. It permits the modular assembly of metamachines by fusion, reconfiguration of metamachines and, we anticipate, a shift in focus of self-assembly towards active matter and reprogrammable materials.

3.
Nanoscale ; 13(18): 8639-8647, 2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-33942037

RESUMO

The influence of ligands on the low frequency vibration of cadmium selenide colloidal nanoplatelets of different thicknesses is investigated using resonant low frequency Raman scattering. The strong vibration frequency shifts induced by ligand modifications as well as sharp spectral linewidths make low frequency Raman scattering a tool of choice to follow ligand exchange as well as the nano-mechanical properties of the NPLs, as evidenced by a carboxylate to thiolate exchange study. Apart from their molecular weight, the nature of the ligands, such as the sulfur to metal bond of thiols, induces a modification of the NPLs as a whole, increasing the thickness by one monolayer. Moreover, as the weight of the ligands increases, the discrepancy between the mass-load model and the experimental measurements increase. These effects are all the more important when the number of layers is small and can only be explained by a modification of the longitudinal sound velocity. This modification takes its origin in a change of the lattice structure of the NPLs, that reflects on their elastic properties. These nanobalances are finally used to characterize ligand affinity with the surface using binary thiol mixtures, illustrating the potential of low frequency Raman scattering to finely characterize nanocrystal surfaces.

4.
Acta Biomater ; 105: 214-222, 2020 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-31988041

RESUMO

The structure of teeth can be altered by diet, age or diseases such as caries and sclerosis. It is very important to characterize their mechanical properties to predict and understand tooth decay, design restorative dental procedures, and investigate their tribological behavior. However, existing imaging techniques are not well suited to investigating the micromechanics of teeth, in particular at tissue interfaces. Here, we describe a microscope based on Brillouin light scattering (BLS) developed to probe the spectrum of the light scattered from tooth tissues, from which the mechanical properties (sound velocity, viscosity) can be inferred with a priori knowledge of the refractive index. BLS is an inelastic process that uses the scattering of light by acoustic waves in the GHz range. Our microscope thus reveals the mechanical properties at the micrometer scale without contact with the sample. BLS signals show significant differences between sound tissues and pathological lesions, and can be used to precisely delineate carious dentin. We also show maps of the sagittal and transversal planes of sound tubular dentin that reveal its anisotropic microstructure at 1 µm resolution. Our observations indicate that the collagen-based matrix of dentine is the main load-bearing structure, which can be considered as a fiber-reinforced composite. In the vicinity of polymeric tooth-filling materials, we observed the infiltration of the adhesive complex into the opened tubules of sound dentine. The ability to probe the quality of this interfacial layer could lead to innovative designs of biomaterials used for dental restorations in contemporary adhesive dentistry, with possible direct repercussions on decision-making during clinical work. STATEMENT OF SIGNIFICANCE: Mechanical properties of teeth can be altered by diet, age or diseases. Yet existing imaging modalities cannot reveal the micromechanics of the tooth. Here we developed a new type of microscope that uses the scattering of a laser light by naturally-occurring acoustic waves to probe mechanical changes in tooth tissues at a sub-micrometer scale without contact to the sample. We observe significant mechanical differences between healthy tissues and pathological lesions. The contrast in mechanical properties also reveals the microstructure of the polymer-dentin interfaces. We believe that this new development of laser spectroscopy is very important because it should lead to innovative designs of biomaterials used for dental restoration, and allow delineating precisely destructed dentin for minimally-invasive strategies.


Assuntos
Dentina/diagnóstico por imagem , Microscopia/métodos , Anisotropia , Cárie Dentária/diagnóstico por imagem , Cimentos Dentários/química , Humanos , Imagem Óptica , Resinas Sintéticas/química
5.
Phys Rev Lett ; 122(1): 018101, 2019 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-31012711

RESUMO

The structure of tumors can be recapitulated as an elastic frame formed by the connected cytoskeletons of the cells invaded by interstitial and intracellular fluids. The low-frequency mechanics of this poroelastic system, dictated by the elastic skeleton only, control tumor growth, penetration of therapeutic agents, and invasiveness. The high-frequency mechanical properties containing the additional contribution of the internal fluids have also been posited to participate in tumor progression and drug resistance, but they remain largely unexplored. Here we use Brillouin light scattering to produce label-free images of tumor microtissues based on the high-frequency viscoelastic modulus as a contrast mechanism. In this regime, we demonstrate that the modulus discriminates between tissues with altered tumorigenic properties. Our micrometric maps also reveal that the modulus is heterogeneously altered across the tissue by drug therapy, revealing a lag of efficacy in the core of the tumor. Exploiting high-frequency poromechanics should advance present theories based on viscoelasticity and lead to integrated descriptions of tumor response to drugs.


Assuntos
Modelos Biológicos , Neoplasias/patologia , Fenômenos Biomecânicos , Linhagem Celular Tumoral , Citoesqueleto/química , Citoesqueleto/patologia , Elasticidade , Células HCT116 , Humanos , Neoplasias/química , Espalhamento de Radiação , Esferoides Celulares/química , Esferoides Celulares/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...