Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Entropy (Basel) ; 25(3)2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36981366

RESUMO

In nuclear reactors, tracking the loss and production of neutrons is crucial for the safe operation of such devices. In this regard, the microscopic cross section with the Doppler broadening function is a way to represent the thermal agitation movement in a reactor core. This function usually considers the Maxwell-Boltzmann statistics for the velocity distribution. However, this distribution cannot be applied on every occasion, i.e., in conditions outside the thermal equilibrium. In order to overcome this potential limitation, Kaniadakis entropy has been used over the last seven years to generate generalised nuclear data. This short review article summarises what has been conducted so far and what has to be conducted yet.

2.
Entropy (Basel) ; 24(10)2022 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37420456

RESUMO

In the last seven years, Kaniadakis statistics, or κ-statistics, have been applied in reactor physics to obtain generalized nuclear data, which can encompass, for instance, situations that lie outside thermal equilibrium. In this sense, numerical and analytical solutions were developed for the Doppler broadening function using the κ-statistics. However, the accuracy and robustness of the developed solutions contemplating the κ distribution can only be appropriately verified if applied inside an official nuclear data processing code to calculate neutron cross-sections. Hence, the present work inserts an analytical solution for the deformed Doppler broadening cross-section inside the nuclear data processing code FRENDY, developed by the Japan Atomic Energy Agency. To do that, we applied a new computational method called the Faddeeva package, developed by MIT, to calculate error functions present in the analytical function. With this deformed solution inserted in the code, we were able to calculate, for the first time, deformed radiative capture cross-section data for four different nuclides. The usage of the Faddeeva package brought more accurate results when compared to other standard packages, reducing the percentage errors in the tail zone in relation to the numerical solution. The deformed cross-section data agreed with the expected behavior compared to the Maxwell-Boltzmann.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...