Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 9(10): 6148-6156, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31161026

RESUMO

The mosquitoes Aedes aegypti (L.) and Ae. albopictus Skuse are the major vectors of dengue, Zika, yellow fever, and chikungunya viruses worldwide. Wolbachia, an endosymbiotic bacterium present in many insects, is being utilized in novel vector control strategies to manipulate mosquito life history and vector competence to curb virus transmission. Earlier studies have found that Wolbachia is commonly detected in Ae. albopictus but rarely detected in Ae. aegypti. In this study, we used a two-step PCR assay to detect Wolbachia in wild-collected samples of Ae. aegypti. The PCR products were sequenced to validate amplicons and identify Wolbachia strains. A loop-mediated isothermal amplification (LAMP) assay was developed and used for detecting Wolbachia in selected mosquito specimens as well. We found Wolbachia in 85/148 (57.4%) wild Ae. aegypti specimens from various cities in New Mexico, and in 2/46 (4.3%) from St. Augustine, Florida. Wolbachia was not detected in 94 samples of Ae. aegypti from Deer Park, Harris County, Texas. Wolbachia detected in Ae. aegypti from both New Mexico and Florida was the wAlbB strain of Wolbachia pipientis. A Wolbachia-positive colony of Ae. aegypti was established from pupae collected in Las Cruces, New Mexico, in 2018. The infected females of this strain transmitted Wolbachia to their progeny when crossed with males of Rockefeller strain of Ae. aegypti, which does not carry Wolbachia. In contrast, none of the progeny of Las Cruces males mated to Rockefeller females were infected with Wolbachia.

2.
PLoS One ; 14(2): e0212693, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30794644

RESUMO

BACKGROUND: Aedes aegypti mosquitoes are vectors of a variety of emerging viral pathogens, including yellow fever, dengue, chikungunya, and Zika virus. This species has established endemic populations in all cities across southern New Mexico sampled to date. Presently, control of Aedes-borne viruses relies on deployment of insecticides to suppress mosquito populations, but the evolution of insecticide resistance threatens the success of vector control programs. While insecticide resistance is quite common in Ae. aegypti field populations across much of the U.S., the resistance status of this species in populations from New Mexico has not previously been assessed. RESULTS: First, we collected information on pesticide use in cities in southern New Mexico and found that the most commonly used active ingredients were pyrethroids. The use of insecticides with the same mode-of-action over multiple years is likely to promote the evolution of resistance. To determine if there was evidence of resistance in some cities in southern New Mexico, we collected Ae. aegypti from the same cities and established laboratory strains to assess resistance to pyrethroid insecticides and, for a subset of populations, to organophosphate insecticides. F2 or F4 generation mosquitoes were assessed for insecticide resistance using bottle test bioassays. The majority of the populations from New Mexico that we analyzed were resistant to the pyrethroids permethrin and deltamethrin. A notable exception to this trend were mosquitoes from Alamogordo, a city that did not report using pyrethroid insecticides for vector control. We screened individuals from each population for known knock down resistance (kdr) mutations via PCR and found a strong association between the presences of the F1534C kdr mutation in the para gene of Ae. aegypti (homologue to F1534C in Musca domestica L.) and pyrethroid resistance. CONCLUSION: High-level pyrethroid resistance is common in Ae. aegypti from New Mexico and geographic variation in such resistance is likely associated with variation in usage of pyrethroids for vector control. Resistance monitoring and management is recommended in light of the potential for arbovirus outbreaks in this state. Also, alternative approaches to mosquito control that do not involve insecticides should be explored.


Assuntos
Aedes/genética , Resistência a Medicamentos/genética , Inseticidas/farmacologia , Mosquitos Vetores/genética , Piretrinas/farmacologia , Animais , Resistência a Medicamentos/efeitos dos fármacos , New Mexico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...