Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Pathogens ; 13(5)2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38787210

RESUMO

This study demonstrates the capability of Raman microscopy for detecting structural differences in Giardia cells exposed to different drugs and incubation times. While metronidazole (MTZ) visibly affects the cells by inducing extracellular vesicle releases of toxic iron intermediates and modified triple-bond moieties, oseltamivir (OSM) alters the phenylalanine and lipid structures. Modifications in the heme protein environment and the transformation of iron from ferric to ferrous observed for both drug treatments are more notable for MTZ. Different contents and amounts of vesicle excretion are detected for 24 h or 48 h with MTZ incubation. At a shorter drug exposure, releases of altered proteins, glycogen, and phospholipids dominate. Agglomerates of transformed iron complexes from heme proteins and multiple-bond moieties prevail at 48 h of treatment. No such vesicle releases are present in the case of OSM usage. Drug incorporations into the cells and their impact on the plasma membrane and the dynamics of lipid raft confirmed by confocal fluorescence microscopy reveal a more destructive extent by OSM, corroborating the Raman results. Raman microscopy provides a broader understanding of the multifaceted factors and mechanisms responsible for giardiasis treatment or drug resistance by enabling a label-free, simultaneous monitoring of structural changes at the cellular and molecular levels.

2.
Sensors (Basel) ; 22(7)2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35408257

RESUMO

In this study, we demonstrate that Raman microscopy combined with computational analysis is a useful approach to discriminating accurately between brain tumor bio-specimens and to identifying structural changes in glioblastoma (GBM) bio-signatures after nordihydroguaiaretic acid (NDGA) administration. NDGA phenolic lignan was selected as a potential therapeutic agent because of its reported beneficial effects in alleviating and inhibiting the formation of multi-organ malignant tumors. The current analysis of NDGA's impact on GBM human cells demonstrates a reduction in the quantity of altered protein content and of reactive oxygen species (ROS)-damaged phenylalanine; results that correlate with the ROS scavenger and anti-oxidant properties of NDGA. A novel outcome presented here is the use of phenylalanine as a biomarker for differentiating between samples and assessing drug efficacy. Treatment with a low NDGA dose shows a decline in abnormal lipid-protein metabolism, which is inferred by the formation of lipid droplets and a decrease in altered protein content. A very high dose results in cell structural and membrane damage that favors transformed protein overexpression. The information gained through this work is of substantial value for understanding NDGA's beneficial as well as detrimental bio-effects as a potential therapeutic drug for brain cancer.


Assuntos
Glioblastoma , Antioxidantes , Glioblastoma/tratamento farmacológico , Humanos , Masoprocol/farmacologia , Masoprocol/uso terapêutico , Fenilalanina , Espécies Reativas de Oxigênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...