Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36909652

RESUMO

Actin-microtubule interactions are critical for cell division yet how these networks of polymers mutually influence their mechanical properties and functions in live cells remains unknown. In fission yeast, the post-anaphase array (PAA) of microtubules assembles in the plane of the contractile ring and its assembly relies on the Myp2p-dependent recruitment of Mto1p, a component of equatorial microtubule organizing centers (eMTOCs). The general organization of this array of microtubule and the impact on their physical attachment to the contractile ring remain unclear. We found that Myp2p facilitates the recruitment of Mto1p to the inner face of the contractile ring where the eMTOCs polymerize microtubules without their direct interaction. The PAA microtubules form a dynamic polygon of Ase1p crosslinked microtubules inside the contractile ring. The specific loss of PAA microtubules affects the mechanical properties of the contractile ring of actin by lowering its stiffness. This change in the mechanical properties of the ring has no measurable impact on cytokinesis or on the anchoring of the ring. Our work proposes that the PAA microtubules exploit the contractile ring for their assembly and function during cell division while the contractile ring may receive no benefit from these interactions.

2.
Cells ; 12(6)2023 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-36980258

RESUMO

Actin-microtubule interactions are critical for cell division, yet how these networks of polymers mutually influence their mechanical properties and functions in live cells remains unknown. In fission yeast, the post-anaphase array (PAA) of microtubules assembles in the plane of the contractile ring, and its assembly relies on the Myp2p-dependent recruitment of Mto1p, a component of equatorial microtubule organizing centers (eMTOCs). The general organization of this array of microtubules and the impact on their physical attachment to the contractile ring remain unclear. We found that Myp2p facilitates the recruitment of Mto1p to the inner face of the contractile ring, where the eMTOCs polymerize microtubules without their direct interaction. The PAA microtubules form a dynamic polygon of Ase1p crosslinked microtubules inside the contractile ring. The specific loss of PAA microtubules affects the mechanical properties of the contractile ring of actin by lowering its stiffness. This change in the mechanical properties of the ring has no measurable impact on cytokinesis or on the anchoring of the ring. Our work proposes that the PAA microtubules exploit the contractile ring for their assembly and function during cell division, while the contractile ring may receive no benefit from these interactions.


Assuntos
Actinas , Schizosaccharomyces , Microtúbulos , Citoesqueleto , Divisão Celular
3.
Sci Adv ; 9(10): eade1285, 2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-36897939

RESUMO

Efficient genome engineering is critical to understand and use microbial functions. Despite recent development of tools such as CRISPR-Cas gene editing, efficient integration of exogenous DNA with well-characterized functions remains limited to model bacteria. Here, we describe serine recombinase-assisted genome engineering, or SAGE, an easy-to-use, highly efficient, and extensible technology that enables selection marker-free, site-specific genome integration of up to 10 DNA constructs, often with efficiency on par with or superior to replicating plasmids. SAGE uses no replicating plasmids and thus lacks the host range limitations of other genome engineering technologies. We demonstrate the value of SAGE by characterizing genome integration efficiency in five bacteria that span multiple taxonomy groups and biotechnology applications and by identifying more than 95 heterologous promoters in each host with consistent transcription across environmental and genetic contexts. We anticipate that SAGE will rapidly expand the number of industrial and environmental bacteria compatible with high-throughput genetics and synthetic biology.


Assuntos
Sistemas CRISPR-Cas , Engenharia Genética , Edição de Genes , Bactérias/genética , DNA
4.
Nat Commun ; 12(1): 2261, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33859194

RESUMO

Expanding the portfolio of products that can be made from lignin will be critical to enabling a viable bio-based economy. Here, we engineer Pseudomonas putida for high-yield production of the tricarboxylic acid cycle-derived building block chemical, itaconic acid, from model aromatic compounds and aromatics derived from lignin. We develop a nitrogen starvation-detecting biosensor for dynamic two-stage bioproduction in which itaconic acid is produced during a non-growth associated production phase. Through the use of two distinct itaconic acid production pathways, the tuning of TCA cycle gene expression, deletion of competing pathways, and dynamic regulation, we achieve an overall maximum yield of 56% (mol/mol) and titer of 1.3 g/L from p-coumarate, and 1.4 g/L titer from monomeric aromatic compounds produced from alkali-treated lignin. This work illustrates a proof-of-principle that using dynamic metabolic control to reroute carbon after it enters central metabolism enables production of valuable chemicals from lignin at high yields by relieving the burden of constitutively expressing toxic heterologous pathways.


Assuntos
Lignina/metabolismo , Engenharia Metabólica/métodos , Pseudomonas putida/metabolismo , Succinatos/metabolismo , Álcalis/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Basidiomycota/enzimologia , Basidiomycota/genética , Técnicas Biossensoriais , Burkholderia/enzimologia , Burkholderia/genética , Carbono/metabolismo , Ciclo do Ácido Cítrico/genética , Ácidos Cumáricos/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Microbiologia Industrial/métodos , Lignina/química , Estudo de Prova de Conceito , Pseudomonas putida/genética
5.
Biotechnol Biofuels ; 12: 295, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31890023

RESUMO

BACKGROUND: Efficient conversion of plant biomass to commodity chemicals is an important challenge that needs to be solved to enable a sustainable bioeconomy. Deconstruction of biomass to sugars and lignin yields a wide variety of low molecular weight carbon substrates that need to be funneled to product. Pseudomonas putida KT2440 has emerged as a potential platform for bioconversion of lignin and the other components of plant biomass. However, P. putida is unable to natively utilize several of the common sugars in hydrolysate streams, including galactose. RESULTS: In this work, we integrated a De Ley-Doudoroff catabolic pathway for galactose catabolism into the chromosome of P. putida KT2440, using genes from several different organisms. We found that the galactonate catabolic pathway alone (DgoKAD) supported slow growth of P. putida on galactose. Further integration of genes to convert galactose to galactonate and to optimize the transporter expression level resulted in a growth rate of 0.371 h-1. Additionally, the best-performing strain was demonstrated to co-utilize galactose with glucose. CONCLUSIONS: We have engineered P. putida to catabolize galactose, which will allow future engineered strains to convert more plant biomass carbon to products of interest. Further, by demonstrating co-utilization of glucose and galactose, continuous bioconversion processes for mixed sugar streams are now possible.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...