Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 14: 1101375, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36818889

RESUMO

Heat stress is poised to become a major factor negatively affecting plant performance worldwide. In terms of world food security, increased ambient temperatures are poised to reduce yields in cereals and other economically important crops. Grain amaranths are known to be productive under poor and/or unfavorable growing conditions that significantly affect cereals and other crops. Several physiological and biochemical attributes have been recognized to contribute to this favorable property, including a high water-use efficiency and the activation of a carbon starvation response. This study reports the behavior of the three grain amaranth species to two different stress conditions: short-term exposure to heat shock (HS) conditions using young plants kept in a conditioned growth chamber or long-term cultivation under severe heat stress in greenhouse conditions. The latter involved exposing grain amaranth plants to daylight temperatures that hovered around 50°C, or above, for at least 4 h during the day and to higher than normal nocturnal temperatures for a complete growth cycle in the summer of 2022 in central Mexico. All grain amaranth species showed a high tolerance to HS, demonstrated by a high percentage of recovery after their return to optimal growing conditions. The tolerance observed coincided with increased expression levels of unknown function genes previously shown to be induced by other (a)biotic stress conditions. Included among them were genes coding for RNA-binding and RNA-editing proteins, respectively. HS tolerance was also in accordance with favorable changes in several biochemical parameters usually induced in plants in response to abiotic stresses. Conversely, exposure to a prolonged severe heat stress seriously affected the vegetative and reproductive development of all three grain amaranth species, which yielded little or no seed. The latter data suggested that the usually stress-tolerant grain amaranths are unable to overcome severe heat stress-related damage leading to reproductive failure.

2.
PeerJ ; 8: e8888, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32337100

RESUMO

Arbuscular mycorrhizal fungi (AMF) colonization, sampled at 32-50 days post-inoculation (dpi), was significantly reduced in suppressor of prosystemin-mediated responses2 (spr2) mutant tomato plants impaired in the ω-3 FATTY ACID DESATURASE7 (FAD7) gene that limits the generation of linolenic acid and, consequently, the wound-responsive jasmonic acid (JA) burst. Contrary to wild-type (WT) plants, JA levels in root and leaves of spr2 mutants remained unchanged in response to AMF colonization, further supporting its regulatory role in the AM symbiosis. Decreased AMF colonization in spr2 plants was also linked to alterations associated with a disrupted FAD7 function, such as enhanced salicylic acid (SA) levels and SA-related defense gene expression and a reduction in fatty acid content in both mycorrhizal spr2 roots and leaves. Transcriptomic data revealed that lower mycorrhizal colonization efficiency in spr2 mutants coincided with the modified expression of key genes controlling gibberellin and ethylene signaling, brassinosteroid, ethylene, apocarotenoid and phenylpropanoid synthesis, and the wound response. Targeted metabolomic analysis, performed at 45 dpi, revealed augmented contents of L-threonic acid and DL-malic acid in colonized spr2 roots which suggested unfavorable conditions for AMF colonization. Additionally, time- and genotype-dependent changes in root steroid glycoalkaloid levels, including tomatine, suggested that these metabolites might positively regulate the AM symbiosis in tomato. Untargeted metabolomic analysis demonstrated that the tomato root metabolomes were distinctly affected by genotype, mycorrhizal colonization and colonization time. In conclusion, reduced AMF colonization efficiency in spr2 mutants is probably caused by multiple and interconnected JA-dependent and independent gene expression and metabolomic alterations.

3.
Planta ; 245(3): 623-640, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27988887

RESUMO

MAIN CONCLUSION: An amaranth DGR gene, induced under abiotic stress, modifies cell wall structure and causes hypersensitivity to ABA and salt when overexpressed in Arabidopsis. DUF642 is a highly conserved plant-specific family of unknown cell wall-associated proteins. The AhDGR2 gene, coding for a DUF642 protein, was significantly induced in grain amaranth (Amaranthus hypochondriacus) plants subjected to water-deficit and salinity stress, thereby suggesting its participation in abiotic stress tolerance in this plant. A role in development was also inferred from the higher AhDGR2 expression rates detected in young tissues. Subsequent overexpression of AhDGR2 in transgenic Arabidopsis plants (OE-AhDGR2) supported its possible role in development processes. Thus, OE-AhDGR2 plants generated significantly longer roots when grown in normal MS medium. However, they showed a hypersensitivity to increasing concentrations of abscisic acid or NaCl in the medium, as manifested by shorter root length, smaller and slightly chlorotic rosettes, as well as highly reduced germination rates. Contrary to expectations, OE-AhDGR2 plants were intolerant to abiotic stress. Moreover, cell walls in transgenic plants were thinner, in leaves, and more disorganized, in roots, and had significantly modified pectin levels. Lower pectin methylesterase activity detected in leaves of OE-AhDGR2 plants, but not in roots, was contrary to previous reports associating DUF642 proteins and decreased pectin esterification levels in cell walls. Nonetheless, microarray data identified candidate genes whose expression levels explained the phenotypes observed in leaves of OE-AhDGR2 plants, including several involved in cell wall integrity and extension, growth and development, and resistance to abiotic stress. These results support the role of DUF642 proteins in cell wall-related processes and offer novel insights into their possible role(s) in plants.


Assuntos
Ácido Abscísico/farmacologia , Amaranthaceae/genética , Arabidopsis/fisiologia , Parede Celular/metabolismo , Proteínas de Plantas/genética , Cloreto de Sódio/farmacologia , Estresse Fisiológico/genética , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Análise de Sequência com Séries de Oligonucleotídeos , Filogenia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Análise de Sequência de DNA , Estresse Fisiológico/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
4.
PLoS One ; 11(10): e0164280, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27749893

RESUMO

Two grain amaranth transcription factor (TF) genes were overexpressed in Arabidopsis plants. The first, coding for a group VII ethylene response factor TF (i.e., AhERF-VII) conferred tolerance to water-deficit stress (WS) in transgenic Arabidopsis without affecting vegetative or reproductive growth. A significantly lower water-loss rate in detached leaves coupled to a reduced stomatal opening in leaves of plants subjected to WS was associated with this trait. WS tolerance was also associated with an increased antioxidant enzyme activity and the accumulation of putative stress-related secondary metabolites. However, microarray and GO data did not indicate an obvious correlation between WS tolerance, stomatal closure, and abscisic acid (ABA)-related signaling. This scenario suggested that stomatal closure during WS in these plants involved ABA-independent mechanisms, possibly involving reactive oxygen species (ROS). WS tolerance may have also involved other protective processes, such as those employed for methyl glyoxal detoxification. The second, coding for a class A and cluster I DNA binding with one finger TF (i.e., AhDof-AI) provided salt-stress (SS) tolerance with no evident fitness penalties. The lack of an obvious development-related phenotype contrasted with microarray and GO data showing an enrichment of categories and genes related to developmental processes, particularly flowering. SS tolerance also correlated with increased superoxide dismutase activity but not with augmented stomatal closure. Additionally, microarray and GO data indicated that, contrary to AhERF-VII, SS tolerance conferred by AhDof-AI in Arabidopsis involved ABA-dependent and ABA-independent stress amelioration mechanisms.


Assuntos
Amaranthus/metabolismo , Arabidopsis/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Antioxidantes/metabolismo , Proteínas de Ligação a DNA/classificação , Proteínas de Ligação a DNA/genética , Secas , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Filogenia , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas/classificação , Proteínas de Plantas/genética , Estômatos de Plantas/fisiologia , Plantas Geneticamente Modificadas/metabolismo , Aldeído Pirúvico/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Tolerância ao Sal , Alinhamento de Sequência , Transdução de Sinais/efeitos dos fármacos , Cloreto de Sódio/farmacologia , Estresse Fisiológico/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Fatores de Transcrição/classificação , Fatores de Transcrição/genética
5.
Plant Sci ; 240: 25-40, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26475185

RESUMO

Nuclear factor-Y (NF-Y), is a plant heterotrimeric transcription factor constituted by NF-YA, NF-YB and NF-YC subunits. The function of many NF-Y subunits, mostly of the A and B type, has been studied in plants, but knowledge regarding the C subunit remains fragmentary. Here, a water stress-induced NF-YC gene from Amaranthus hypochondriacus (AhNF-YC) was further characterized by its overexpression in transgenic Arabidospis thaliana plants. A role in development was inferred from modified growth rates in root, rosettes and inflorescences recorded in AhNF-YC overexpressing Arabidopsis plants, in addition to a delayed onset of flowering. Also, the overexpression of AhNF-YC caused increased seedling sensitivity to abscisic acid (ABA), and influenced the expression of several genes involved in secondary metabolism, development and ABA-related responses. An altered expression of the latter in water stressed and recovered transgenic plants, together with the observed increase in ABA sensitivity, suggested that their increased water stress resistance was partly ABA-dependent. An untargeted metabolomic analysis also revealed an altered metabolite pattern, both in normal and water stress/recovery conditions. These results suggest that AhNF-YC may play an important regulatory role in both development and stress, and represents a candidate gene for the engineering of abiotic stress resistance in commercial crops.


Assuntos
Amaranthus/genética , Arabidopsis/fisiologia , Fator de Ligação a CCAAT/genética , Expressão Ectópica do Gene , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Estresse Fisiológico/genética , Amaranthus/metabolismo , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Fator de Ligação a CCAAT/química , Fator de Ligação a CCAAT/metabolismo , Secas , Análise de Sequência com Séries de Oligonucleotídeos , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Alinhamento de Sequência , Análise de Sequência de DNA
6.
Front Plant Sci ; 6: 602, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26300899

RESUMO

Grain amaranths tolerate stress and produce highly nutritious seeds. We have identified several (a)biotic stress-responsive genes of unknown function in Amaranthus hypochondriacus, including the so-called Ah24 gene. Ah24 was expressed in young or developing tissues; it was also strongly induced by mechanical damage, insect herbivory and methyl jasmonate and in meristems and newly emerging leaves of severely defoliated plants. Interestingly, an in silico analysis of its 1304 bp promoter region showed a predominance of regulatory boxes involved in development, but not in defense. The Ah24 cDNA encodes a predicted cytosolic protein of 164 amino acids, the localization of which was confirmed by confocal microscopy. Additional in silico analysis identified several other Ah24 homologs, present almost exclusively in plants belonging to the Caryophyllales. The possible function of this gene in planta was examined in transgenic Ah24 overexpressing Arabidopsis thaliana and Nicotiana tabacum plants. Transformed Arabidopsis showed enhanced vegetative growth and increased leaf number with no penalty in one fitness component, such as seed yield, in experimental conditions. Transgenic tobacco plants, which grew and reproduced normally, had increased insect herbivory resistance. Modified vegetative growth in transgenic Arabidopsis coincided with significant changes in the expression of genes controlling phytohormone synthesis or signaling, whereas increased resistance to insect herbivory in transgenic tobacco coincided with higher jasmonic acid and proteinase inhibitor activity levels, plus the accumulation of nicotine and several other putative defense-related metabolites. It is proposed that the primary role of the Ah24 gene in A. hypochondriacus is to contribute to a rapid recovery post-wounding or defoliation, although its participation in defense against insect herbivory is also plausible.

7.
J Plant Physiol ; 171(11): 927-39, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24913050

RESUMO

Amaranthus cruentus (Ac) plants were treated with the synthetic systemic acquired resistance (SAR) inducer benzothiadiazole (BTH), methyl jasmonate (MeJA) and the incompatible pathogen, Pseudomonas syringae pv. syringae (Pss), under greenhouse conditions. The treatments induced a set of marker genes in the absence of pathogen infection: BTH and Pss similarly induced genes coding for pathogenesis-related and antioxidant proteins, whereas MeJA induced the arginase, LOX2 and amarandin 1 genes. BTH and Pss were effective when tested against the Gram negative pathogen Ps pv. tabaci (Pst), which was found to have a compatible interaction with grain amaranth. The resistance response appeared to be salicylic acid-independent. However, resistance against Clavibacter michiganensis subsp. michiganensis (Cmm), a Gram positive tomato pathogen also found to infect Ac, was only conferred by Pss, while BTH increased susceptibility. Conversely, MeJA was ineffective against both pathogens. Induced resistance against Pst correlated with the rapid and sustained stimulation of the above genes, including the AhPAL2 gene, which were expressed both locally and distally. The lack of protection against Cmm provided by BTH, coincided with a generalized down-regulation of defense gene expression and chitinase activity. On the other hand, Pss-treated Ac plants showed augmented expression levels of an anti-microbial peptide gene and, surprisingly, of AhACCO, an ethylene biosynthetic gene associated with susceptibility to Cmm in tomato, its main host. Pss treatment had no effect on productivity, but compromised growth, whereas MeJA reduced yield and harvest index. Conversely, BTH treatments led to smaller plants, but produced significantly increased yields. These results suggest essential differences in the mechanisms employed by biological and chemical agents to induce SAR in Ac against bacterial pathogens having different infection strategies. This may determine the outcome of a particular plant-pathogen interaction, leading to resistance or susceptibility, as in Cmm-challenged Ac plants previously induced with Pss or BTH, respectively.


Assuntos
Amaranthus/efeitos dos fármacos , Amaranthus/microbiologia , Bactérias Gram-Negativas/patogenicidade , Bactérias Gram-Positivas/patogenicidade , Acetatos/farmacologia , Amaranthus/metabolismo , Ciclopentanos/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Oxilipinas/farmacologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Pseudomonas syringae/fisiologia , Tiadiazóis/farmacologia
8.
PLoS One ; 9(2): e88094, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24533068

RESUMO

Grain amaranth is an emerging crop that produces seeds having high quality protein with balanced amino-acid content. However, production is restricted by agronomic limitations that result in yields that are lower than those normally produced by cereals. In this work, the use of five different rhizobacteria were explored as a strategy to promote growth and yields in Amaranthus hypochondriacus cv. Nutrisol and A. cruentus cv. Candil, two commercially important grain amaranth cultivars. The plants were grown in a rich substrate, high in organic matter, nitrogen (N), and phosphorus (P) and under greenhouse conditions. Burkholderia ambifaria Mex-5 and B. caribensis XV proved to be the most efficient strains and significantly promoted growth in both grain amaranth species tested. Increased grain yield and harvest index occurred in combination with chemical fertilization when tested in A. cruentus. Growth-promotion and improved yields correlated with increased N content in all tissues examined. Positive effects on growth also occurred in A. cruentus plants grown in a poor soil, even after N and P fertilization. No correlation between non-structural carbohydrate levels in roots of inoculated plants and growth promotion was observed. Conversely, gene expression assays performed at 3-, 5- and 7-weeks after seed inoculation in plants inoculated with B. caribensis XV identified a tissue-specific induction of several genes involved in photosynthesis, sugar- and N- metabolism and transport. It is concluded that strains of Burkholderia effectively promote growth and increase seed yields in grain amaranth. Growth promotion was particularly noticeable in plants grown in an infertile soil but also occurred in a well fertilized rich substrate. The positive effects observed may be attributed to a bio-fertilization effect that led to increased N levels in roots and shoots. The latter effect correlated with the differential induction of several genes involved in carbon and N metabolism and transport.


Assuntos
Amaranthus/crescimento & desenvolvimento , Amaranthus/microbiologia , Burkholderia , Nitrogênio/metabolismo , Amaranthus/metabolismo , Aminoácidos/metabolismo , Metabolismo dos Carboidratos , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/metabolismo , Produtos Agrícolas/microbiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Fósforo/metabolismo , Fotossíntese , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Caules de Planta/metabolismo , Caules de Planta/microbiologia , Reação em Cadeia da Polimerase em Tempo Real , Sementes/metabolismo , Solo/química
9.
BMC Genomics ; 12: 363, 2011 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-21752295

RESUMO

BACKGROUND: Amaranthus hypochondriacus, a grain amaranth, is a C4 plant noted by its ability to tolerate stressful conditions and produce highly nutritious seeds. These possess an optimal amino acid balance and constitute a rich source of health-promoting peptides. Although several recent studies, mostly involving subtractive hybridization strategies, have contributed to increase the relatively low number of grain amaranth expressed sequence tags (ESTs), transcriptomic information of this species remains limited, particularly regarding tissue-specific and biotic stress-related genes. Thus, a large scale transcriptome analysis was performed to generate stem- and (a)biotic stress-responsive gene expression profiles in grain amaranth. RESULTS: A total of 2,700,168 raw reads were obtained from six 454 pyrosequencing runs, which were assembled into 21,207 high quality sequences (20,408 isotigs + 799 contigs). The average sequence length was 1,064 bp and 930 bp for isotigs and contigs, respectively. Only 5,113 singletons were recovered after quality control. Contigs/isotigs were further incorporated into 15,667 isogroups. All unique sequences were queried against the nr, TAIR, UniRef100, UniRef50 and Amaranthaceae EST databases for annotation. Functional GO annotation was performed with all contigs/isotigs that produced significant hits with the TAIR database. Only 8,260 sequences were found to be homologous when the transcriptomes of A. tuberculatus and A. hypochondriacus were compared, most of which were associated with basic house-keeping processes. Digital expression analysis identified 1,971 differentially expressed genes in response to at least one of four stress treatments tested. These included several multiple-stress-inducible genes that could represent potential candidates for use in the engineering of stress-resistant plants. The transcriptomic data generated from pigmented stems shared similarity with findings reported in developing stems of Arabidopsis and black cottonwood (Populus trichocarpa). CONCLUSIONS: This study represents the first large-scale transcriptomic analysis of A. hypochondriacus, considered to be a highly nutritious and stress-tolerant crop. Numerous genes were found to be induced in response to (a)biotic stress, many of which could further the understanding of the mechanisms that contribute to multiple stress-resistance in plants, a trait that has potential biotechnological applications in agriculture.


Assuntos
Amaranthus/genética , Perfilação da Expressão Gênica , Estresse Fisiológico , Biologia Computacional , Mapeamento de Sequências Contíguas , Bases de Dados Factuais , Etiquetas de Sequências Expressas , Folhas de Planta/genética , Proteínas de Plantas/genética , Caules de Planta/genética , Análise de Sequência de DNA
10.
J Chem Ecol ; 30(5): 1001-34, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15274445

RESUMO

Amaranthus hypochondriacus is a C4 pseudocereal crop capable of producing reasonable grain yields in adverse environmental conditions that limit cereal performance. It accumulates trypsin inhibitors and alpha-amylase inhibitors in seeds and leaves that are considered to act as insect feeding deterrents. Foliar trypsin and alpha-amylase inhibitors also accumulate by treatment with exogenous jasmonic acid (JA) in controlled laboratory conditions. Three field experiments were performed in successive years to test if two nonphytotoxic dosages of JA were capable of inducing inhibitor activity in A. hypochondriacus in agronomical settings, and if this induced response reduced insect herbivory and insect abundance in foliage and seed heads. The performance of JA-treated plants was compared to insecticide-treated plants and untreated controls. The effect of exogenous JA on the foliar levels of six additional putatively defence proteins was also evaluated. Possible adverse effects of JA induction on productivity were evaluated by measuring grain yield, seed protein content, and germination efficiency. The results present a complex pattern and were not consistent from year to year. To some extent, the yearly variability observed could have been consequence of growth under drought versus nondrought conditions. In a drought year, JA-treated plants had lower levels of insect herbivory-derived damage in apical leaves and panicle than control plants, whereas in nondrought years, there was an inconsistent effect on aphids, with no effect on lepidopteran larvae. JA treatments reduced the size of the insect community in seed heads. The effect varied with year. Exogenous JA did not adversely affect productivity, and in the absence of drought stress, the higher dosage enhanced grain yield. Induction of defensive proteins by JA, although sporadic, was more effective in nondrought conditions. The patterns of foliar protein accumulation observed suggest that they may be part of a constitutive, rather than inducible, chemical defense mechanism that is developmentally regulated and critically dependent on the environment. The results emphasize the difficulties that are often encountered when evaluating the performance of chemical elicitors of induced resistance in field settings.


Assuntos
Amaranthus/efeitos dos fármacos , Ciclopentanos/farmacologia , Reguladores de Crescimento de Plantas/farmacologia , Folhas de Planta/efeitos dos fármacos , Sementes/efeitos dos fármacos , Amaranthus/crescimento & desenvolvimento , Animais , Afídeos/classificação , Afídeos/fisiologia , Meio Ambiente , Germinação/efeitos dos fármacos , Germinação/fisiologia , Oxilipinas , Reguladores de Crescimento de Plantas/fisiologia , Folhas de Planta/fisiologia , Proteínas de Plantas/metabolismo , Sementes/fisiologia , Inibidores da Tripsina/metabolismo , alfa-Amilases/antagonistas & inibidores , alfa-Amilases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...