Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
PLoS One ; 19(2): e0297291, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38363760

RESUMO

BACKGROUND: The oral cavity is the site of entry and replication for many respiratory viruses. Furthermore, it is the source of droplets and aerosols that facilitate viral transmission. It is thought that appropriate oral hygiene that alters viral infectivity might reduce the spread of respiratory viruses and contribute to infection control. MATERIALS AND METHODS: Here, we analyzed the antiviral activity of cetylpyridinium chloride (CPC), chlorhexidine (CHX), and three commercial CPC and CHX-containing mouthwash preparations against the Influenza A virus and the Respiratory syncytial virus. To do so the aforementioned compounds and preparations were incubated with the Influenza A virus or with the Respiratory syncytial virus. Next, we analyzed the viability of the treated viral particles. RESULTS: Our results indicate that CPC and CHX decrease the infectivity of both the Influenza A virus and the Respiratory Syncytial virus in vitro between 90 and 99.9% depending on the concentration. Likewise, CPC and CHX-containing mouthwash preparations were up to 99.99% effective in decreasing the viral viability of both the Influenza A virus and the Respiratory syncytial virus in vitro. CONCLUSION: The use of a mouthwash containing CPC or CHX alone or in combination might represent a cost-effective measure to limit infection and spread of enveloped respiratory viruses infecting the oral cavity, aiding in reducing viral transmission. Our findings may stimulate future clinical studies to evaluate the effects of CPC and CHX in reducing viral respiratory transmissions.


Assuntos
Anti-Infecciosos Locais , Vírus da Influenza A , Clorexidina , Antissépticos Bucais , Cetilpiridínio/farmacologia , Vírus Sinciciais Respiratórios , Antivirais/farmacologia
2.
Virol J ; 20(1): 99, 2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-37226231

RESUMO

Several approaches have been developed to analyze the entry of highly pathogenic viruses. In this study, we report the implementation of a Bimolecular Multicellular Complementation (BiMuC) assay to safely and efficiently monitor SARS-CoV-2 S-mediated membrane fusion without the need for microscopy-based equipment. Using BiMuC, we screened a library of approved drugs and identified compounds that enhance S protein-mediated cell-cell membrane fusion. Among them, ethynylestradiol promotes the growth of SARS-CoV-2 and Influenza A virus in vitro. Our findings demonstrate the potential of BiMuC for identifying small molecules that modulate the life cycle of enveloped viruses, including SARS-CoV-2.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Internalização do Vírus , Bioensaio , Biblioteca Gênica
3.
Proc Natl Acad Sci U S A ; 120(11): e2219648120, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36881618

RESUMO

Several methods have been developed to explore interactions among water-soluble proteins or regions of proteins. However, techniques to target transmembrane domains (TMDs) have not been examined thoroughly despite their importance. Here, we developed a computational approach to design sequences that specifically modulate protein-protein interactions in the membrane. To illustrate this method, we demonstrated that BclxL can interact with other members of the B cell lymphoma 2 (Bcl2) family through the TMD and that these interactions are required for BclxL control of cell death. Next, we designed sequences that specifically recognize and sequester the TMD of BclxL. Hence, we were able to prevent BclxL intramembrane interactions and cancel its antiapoptotic effect. These results advance our understanding of protein-protein interactions in membranes and provide a means to modulate them. Moreover, the success of our approach may trigger the development of a generation of inhibitors targeting interactions between TMDs.


Assuntos
Água , Morte Celular , Domínios Proteicos
4.
Biomolecules ; 13(3)2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36979390

RESUMO

The protein C is a small viral protein encoded in an overlapping frame of the P gene in the subfamily Orthoparamyxovirinae. This protein, expressed by alternative translation initiation, is a virulence factor that regulates viral transcription, replication, and production of defective interfering RNA, interferes with the host-cell innate immunity systems and supports the assembly of viral particles and budding. We expressed and purified full-length and an N-terminally truncated C protein from Tupaia paramyxovirus (TupV) C protein (genus Narmovirus). We solved the crystal structure of the C-terminal part of TupV C protein at a resolution of 2.4 Å and found that it is structurally similar to Sendai virus C protein, suggesting that despite undetectable sequence conservation, these proteins are homologous. We characterized both truncated and full-length proteins by SEC-MALLS and SEC-SAXS and described their solution structures by ensemble models. We established a mini-replicon assay for the related Nipah virus (NiV) and showed that TupV C inhibited the expression of NiV minigenome in a concentration-dependent manner as efficiently as the NiV C protein. A previous study found that the Orthoparamyxovirinae C proteins form two clusters without detectable sequence similarity, raising the question of whether they were homologous or instead had originated independently. Since TupV C and SeV C are representatives of these two clusters, our discovery that they have a similar structure indicates that all Orthoparamyxovirine C proteins are homologous. Our results also imply that, strikingly, a STAT1-binding site is encoded by exactly the same RNA region of the P/C gene across Paramyxovirinae, but in different reading frames (P or C), depending on which cluster they belong to.


Assuntos
Vírus Nipah , Espalhamento a Baixo Ângulo , Difração de Raios X , Vírus Nipah/genética , Vírus Nipah/metabolismo , Imunidade Inata , RNA/metabolismo
5.
J Oral Microbiol ; 14(1): 2030094, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35087641

RESUMO

BACKGROUND: SARS-CoV-2 is continuously disseminating worldwide. The development of strategies to break transmission is mandatory. AIM OF THE STUDY: To investigate the potential of cetylpyridinium chloride (CPC) as a viral inhibitor. METHODS: SARS-CoV-2 Virus Like-Particles (VLPs) were incubated with CPC, a potent surfactant routinely included in mouthwash preparations. RESULTS: Concentrations of 0.05% CPC (w/v) commonly used in mouthwash preparations are sufficient to promote the rupture of SARS-CoV-2 VLP membranes. CONCLUSION: Including CPC in mouthwashes could be a prophylactic strategy to keep SARS-CoV-2 from spreading.

6.
Int J Mol Sci ; 22(23)2021 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-34884581

RESUMO

In eukaryotic cells, the endoplasmic reticulum (ER) is the entry point for newly synthesized proteins that are subsequently distributed to organelles of the endomembrane system. Some of these proteins are completely translocated into the lumen of the ER while others integrate stretches of amino acids into the greasy 30 Å wide interior of the ER membrane bilayer. It is generally accepted that to exist in this non-aqueous environment the majority of membrane integrated amino acids are primarily non-polar/hydrophobic and adopt an α-helical conformation. These stretches are typically around 20 amino acids long and are known as transmembrane (TM) helices. In this review, we will consider how transmembrane helices achieve membrane integration. We will address questions such as: Where do the stretches of amino acids fold into a helical conformation? What is/are the route/routes that these stretches take from synthesis at the ribosome to integration through the ER translocon? How do these stretches 'know' to integrate and in which orientation? How do marginally hydrophobic stretches of amino acids integrate and survive as transmembrane helices?


Assuntos
Retículo Endoplasmático/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Dobramento de Proteína , Animais , Humanos , Interações Hidrofóbicas e Hidrofílicas , Conformação Proteica em alfa-Hélice
7.
Biochim Biophys Acta Biomembr ; 1863(12): 183712, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34331948

RESUMO

The study of protein-protein interactions (PPI) has proven fundamental for the understanding of the most relevant cell processes. Any protein domain can participate in PPI, including transmembrane (TM) segments that can establish interactions with other TM domains (TMDs). However, the hydrophobic nature of TMDs and the environment they occupy complicates the study of intramembrane PPI, which demands the use of specific approaches and techniques. In this review, we will explore some of the strategies available to study intramembrane PPI in vitro, in vivo, and, in silico, focusing on those techniques that could be carried out in a standard molecular biology laboratory regarding its previous experience with membrane proteins.


Assuntos
Proteínas de Membrana/genética , Domínios Proteicos/genética , Mapas de Interação de Proteínas/genética , Bactérias/genética , Comunicação Celular/genética , Interações Hidrofóbicas e Hidrofílicas , Proteínas de Membrana/química , Dobramento de Proteína
8.
Mol Cell Oncol ; 8(3): 1911290, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34027047

RESUMO

Viral control of apoptosis occurs through the expression of viral encoded anti-apoptotic B-cell lymphoma 2 (BCL2) analogs. These proteins are thought to restrain apoptosis by interacting with cellular BCL2 family members. We identified that protein-protein interactions between cellular and viral BCL2 transmembrane domains are crucial for the viral protein's function.

10.
Phys Chem Chem Phys ; 23(3): 1802-1810, 2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33434247

RESUMO

Development of new memristive hardware is a technological requirement towards widespread neuromorphic computing. Molecular spintronics seems to be a fertile field for the design and preparation of this hardware. Within molecular spintronics, recent results on metallopeptides demonstrating the interaction between paramagnetic ions and the chirality induced spin selectivity effect hold particular promise for developing fast (ns-µs) operation times. [R. Torres-Cavanillas et al., J. Am. Chem. Soc., 2020, DOI: 10.1021/jacs.0c07531]. Among the challenges in the field, a major highlight is the difficulty in modelling the spin dynamics in these complex systems, but at the same time the use of inexpensive methods has already allowed progress in that direction. Finally, we discuss the unique potential of biomolecules for the design of multistate memristors with a controlled- and indeed, programmable-nanostructure, allowing going beyond anything that is conceivable by employing conventional coordination chemistry.


Assuntos
Metaloproteínas/química , Redes Neurais de Computação , Peptídeos/química , Sequência de Aminoácidos , Sequência de Bases , Elementos da Série dos Lantanídeos/química
11.
Nat Commun ; 11(1): 6056, 2020 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-33247105

RESUMO

Viral control of programmed cell death relies in part on the expression of viral analogs of the B-cell lymphoma 2 (Bcl2) protein known as viral Bcl2s (vBcl2s). vBcl2s control apoptosis by interacting with host pro- and anti-apoptotic members of the Bcl2 family. Here, we show that the carboxyl-terminal hydrophobic region of herpesviral and poxviral vBcl2s can operate as transmembrane domains (TMDs) and participate in their homo-oligomerization. Additionally, we show that the viral TMDs mediate interactions with cellular pro- and anti-apoptotic Bcl2 TMDs within the membrane. Furthermore, these intra-membrane interactions among viral and cellular proteins are necessary to control cell death upon an apoptotic stimulus. Therefore, their inhibition represents a new potential therapy against viral infections, which are characterized by short- and long-term deregulation of programmed cell death.


Assuntos
Apoptose , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Virais/química , Proteínas Virais/metabolismo , Sequência de Aminoácidos , Linhagem Celular , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Doxorrubicina/farmacologia , Fluorescência , Humanos , Interações Hidrofóbicas e Hidrofílicas , Ligação Proteica/efeitos dos fármacos , Domínios Proteicos , Multimerização Proteica/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/química
12.
Open Biol ; 10(9): 200209, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32898469

RESUMO

Coronavirus E protein is a small membrane protein found in the virus envelope. Different coronavirus E proteins share striking biochemical and functional similarities, but sequence conservation is limited. In this report, we studied the E protein topology from the new SARS-CoV-2 virus both in microsomal membranes and in mammalian cells. Experimental data reveal that E protein is a single-spanning membrane protein with the N-terminus being translocated across the membrane, while the C-terminus is exposed to the cytoplasmic side (Ntlum/Ctcyt). The defined membrane protein topology of SARS-CoV-2 E protein may provide a useful framework to understand its interaction with other viral and host components and contribute to establish the basis to tackle the pathogenesis of SARS-CoV-2.


Assuntos
Betacoronavirus/metabolismo , Eucariotos/metabolismo , Proteínas do Envelope Viral/metabolismo , Sequência de Aminoácidos , Betacoronavirus/isolamento & purificação , COVID-19 , Membrana Celular/metabolismo , Proteínas do Envelope de Coronavírus , Infecções por Coronavirus/patologia , Infecções por Coronavirus/virologia , Eucariotos/citologia , Humanos , Microssomos/metabolismo , Mutação , Pandemias , Filogenia , Pneumonia Viral/patologia , Pneumonia Viral/virologia , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , SARS-CoV-2 , Alinhamento de Sequência , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/classificação , Proteínas do Envelope Viral/genética
13.
ACS Omega ; 5(1): 556-560, 2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-31956802

RESUMO

A peptide corresponding to bacteriorhodopsin (bR) helix C, later named pHLIP, inserts across lipid bilayers as a monomeric α-helix at acidic pH, but is an unstructured surface-bound monomer at neutral pH. As a result of such pH-responsiveness, pHLIP targets acidic tumors and has been used as a vehicle for imaging and drug-delivery cargoes. To gain insights about the insertion of bR helix C into biological membranes, we replaced two key aspartic residues that control the topological transition from the aqueous phase into a lipid bilayer. Here, we used an in vitro transcription-translation system to study the translocon-mediated insertion of helix C-derived segments into rough microsomes. Our data provide the first quantitative biological understanding of this effect. Interestingly, replacing the aspartic residues by glutamic residues does not significantly alters the insertion propensity, while replacement by alanines promotes a transmembrane orientation. These results are consistent with mutational data obtained in synthetic liposomes by manipulating pH conditions. Our findings support the notion that the translocon facilitates topogenesis under physiological pH conditions.

14.
Viruses ; 11(3)2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30866435

RESUMO

Fusion of viral and cellular membranes is a key step during the viral life cycle. Enveloped viruses trigger this process by means of specialized viral proteins expressed on their surface, the so-called viral fusion proteins. There are multiple assays to analyze the viral entry including those that focus on the cell-cell fusion induced by some viral proteins. These methods often rely on the identification of multinucleated cells (syncytium) as a result of cell membrane fusions. In this manuscript, we describe a novel methodology for the study of cell-cell fusion. Our approach, named Bimolecular Multicellular Complementation (BiMuC), provides an adjustable platform to qualitatively and quantitatively investigate the formation of a syncytium. Furthermore, we demonstrated that our procedure meets the requirements of a drug discovery approach and performed a proof of concept small molecule high-throughput screening to identify compounds that could block the entry of the emerging Nipah virus.


Assuntos
Descoberta de Drogas/métodos , Células Gigantes/virologia , Vírus Nipah/fisiologia , Internalização do Vírus/efeitos dos fármacos , Células Gigantes/fisiologia , Células HEK293 , Ensaios de Triagem em Larga Escala , Humanos , Vírus Nipah/efeitos dos fármacos , Vírus Nipah/genética , Bibliotecas de Moléculas Pequenas
15.
J Proteomics ; 172: 190-200, 2018 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-29092793

RESUMO

Virions are often described as virus-only entities with no cellular components with the exception of the lipids in their membranes. However, advances in proteomics are revealing substantial amounts of host proteins in the viral particles. In the case of Nipah virus (NiV), the viral components in the virion have been known for some time. Nonetheless, no information has been obtained regarding the cellular proteins in the viral particles. To address this question, we produced Virus-Like Particles (VLPs) for NiV by expressing the F, G and M proteins in human-derived cells. Next, the proteomic content in these VLPs was analyzed by LC-MS/MS. We identified 67 human proteins including soluble and membrane-bound proteins involved in vesicle sorting and transport. Interestingly, many of them have been reported to interact with other viruses. Finally, thanks to the semi-quantitative nature of our data we were able to estimate the ratio among F, G and M proteins and also the ratio between cellular and viral proteins in the VLPs. We believe our data contribute to the better understanding of NiV life cycle and might facilitate future attempts for developing antiviral agents and the design of further experimental studies for this deadly infection. BIOLOGICAL SIGNIFICANCE: Traditionally viral particles have been described as pure entities carrying only viral-derived proteins. Advances in proteomics are changing this simplified view. Host proteins have been identified in many viruses (especially in enveloped viruses). These cell-derived proteins participate in multiple steps in the viral life cycle and might be as important for the survival of the virus as any other viral-encoded protein. In this work, we analyze utilizing LC-MS/MS the cellular proteins incorporated or bound to the virions of Nipah virus (NiV), an emerging, highly pathogenic, zoonotic virus from the Paramyxoviridiae family. Furthermore, we analyzed the ratio between cellular and viral proteins and among the viral F, G and M proteins in the viral particles. The characterization of the Nipah virus-human interactions occurring in the virion might facilitate the development of new therapeutic and prophylactic therapies for this viral illness.


Assuntos
Vírus Nipah/química , Proteômica/métodos , Proteínas Virais/análise , Vírion/química , Cromatografia Líquida , Interações Hospedeiro-Patógeno , Humanos , Ligação Proteica , Espectrometria de Massas em Tandem
16.
J Virol ; 91(23)2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28904190

RESUMO

Nipah virus is an emerging, highly pathogenic, zoonotic virus of the Paramyxoviridae family. Human transmission occurs by close contact with infected animals, the consumption of contaminated food, or, occasionally, via other infected individuals. Currently, we lack therapeutic or prophylactic treatments for Nipah virus. To develop these agents we must now improve our understanding of the host-virus interactions that underpin a productive infection. This aim led us to perform the present work, in which we identified 101 human-Nipah virus protein-protein interactions (PPIs), most of which (88) are novel. This data set provides a comprehensive view of the host complexes that are manipulated by viral proteins. Host targets include the PRP19 complex and the microRNA (miRNA) processing machinery. Furthermore, we explored the biologic consequences of the interaction with the PRP19 complex and found that the Nipah virus W protein is capable of altering p53 control and gene expression. We anticipate that these data will help in guiding the development of novel interventional strategies to counter this emerging viral threat.IMPORTANCE Nipah virus is a recently discovered virus that infects a wide range of mammals, including humans. Since its discovery there have been yearly outbreaks, and in some of them the mortality rate has reached 100% of the confirmed cases. However, the study of Nipah virus has been largely neglected, and currently we lack treatments for this infection. To develop these agents we must now improve our understanding of the host-virus interactions that underpin a productive infection. In the present work, we identified 101 human-Nipah virus protein-protein interactions using an affinity purification approach coupled with mass spectrometry. Additionally, we explored the cellular consequences of some of these interactions. Globally, this data set offers a comprehensive and detailed view of the host machinery's contribution to the Nipah virus's life cycle. Furthermore, our data present a large number of putative drug targets that could be exploited for the treatment of this infection.


Assuntos
Interações Hospedeiro-Patógeno , Vírus Nipah/metabolismo , Mapas de Interação de Proteínas , Proteínas Virais/metabolismo , Animais , Infecções por Henipavirus/virologia , Humanos , Espectrometria de Massas , Vírus Nipah/química , Vírus Nipah/genética , Proteínas Virais/química , Proteínas Virais/isolamento & purificação , Internalização do Vírus
17.
Biochim Biophys Acta Biomembr ; 1859(5): 903-909, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28132902

RESUMO

Translocon-associated protein (TRAP) complex is intimately associated with the ER translocon for the insertion or translocation of newly synthesised proteins in eukaryotic cells. The TRAP complex is comprised of three single-spanning and one multiple-spanning subunits. We have investigated the membrane insertion and topology of the multiple-spanning TRAP-γ subunit by glycosylation mapping and green fluorescent protein fusions both in vitro and in cell cultures. Results demonstrate that TRAP-γ has four transmembrane (TM) segments, an Nt/Ct cytosolic orientation and that the less hydrophobic TM segment inserts efficiently into the membrane only in the cellular context of full-length protein.


Assuntos
Proteínas de Ligação ao Cálcio/química , Glicoproteínas de Membrana/química , Proteínas de Membrana/química , Receptores Citoplasmáticos e Nucleares/química , Receptores de Peptídeos/química , Retículo Endoplasmático/química , Interações Hidrofóbicas e Hidrofílicas , Subunidades Proteicas
18.
Cell Stress ; 1(2): 90-106, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-31225439

RESUMO

Folding and packing of membrane proteins are highly influenced by the lipidic component of the membrane. Here, we explore how the hydrophobic mismatch (the difference between the hydrophobic span of a transmembrane protein region and the hydrophobic thickness of the lipid membrane around the protein) influences transmembrane helix packing in a cellular environment. Using a ToxRED assay in Escherichia coli and a Bimolecular Fluorescent Complementation approach in human-derived cells complemented by atomistic molecular dynamics simulations we analyzed the dimerization of Glycophorin A derived transmembrane segments. We concluded that, biological membranes can accommodate transmembrane homo-dimers with a wide range of hydrophobic lengths. Hydrophobic mismatch and its effects on dimerization are found to be considerably weaker than those previously observed in model membranes, or under in vitro conditions, indicating that biological membranes (particularly eukaryotic membranes) can adapt to structural deformations through compensatory mechanisms that emerge from their complex structure and composition to alleviate membrane stress. Results based on atomistic simulations support this view, as they revealed that Glycophorin A dimers remain stable, despite of poor hydrophobic match, using mechanisms based on dimer tilting or local membrane thickness perturbations. Furthermore, hetero-dimers with large length disparity between their monomers are also tolerated in cells, and the conclusions that one can draw are essentially similar to those found with homo-dimers. However, large differences between transmembrane helices length hinder the monomer/dimer equilibrium, confirming that, the hydrophobic mismatch has, nonetheless, biologically relevant effects on helix packing in vivo.

19.
J Biol Chem ; 291(53): 27170-27186, 2016 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-27864365

RESUMO

Folding of G-protein coupled receptors (GPCRs) according to the two-stage model (Popot, J. L., and Engelman, D. M. (1990) Biochemistry 29, 4031-4037) is postulated to proceed in 2 steps: partitioning of the polypeptide into the membrane followed by diffusion until native contacts are formed. Herein we investigate conformational preferences of fragments of the yeast Ste2p receptor using NMR. Constructs comprising the first, the first two, and the first three transmembrane (TM) segments, as well as a construct comprising TM1-TM2 covalently linked to TM7 were examined. We observed that the isolated TM1 does not form a stable helix nor does it integrate well into the micelle. TM1 is significantly stabilized upon interaction with TM2, forming a helical hairpin reported previously (Neumoin, A., Cohen, L. S., Arshava, B., Tantry, S., Becker, J. M., Zerbe, O., and Naider, F. (2009) Biophys. J. 96, 3187-3196), and in this case the protein integrates into the hydrophobic interior of the micelle. TM123 displays a strong tendency to oligomerize, but hydrogen exchange data reveal that the center of TM3 is solvent exposed. In all GPCRs so-far structurally characterized TM7 forms many contacts with TM1 and TM2. In our study TM127 integrates well into the hydrophobic environment, but TM7 does not stably pack against the remaining helices. Topology mapping in microsomal membranes also indicates that TM1 does not integrate in a membrane-spanning fashion, but that TM12, TM123, and TM127 adopt predominantly native-like topologies. The data from our study would be consistent with the retention of individual helices of incompletely synthesized GPCRs in the vicinity of the translocon until the complete receptor is released into the membrane interior.


Assuntos
Ressonância Magnética Nuclear Biomolecular/métodos , Fragmentos de Peptídeos/química , Receptores de Fator de Acasalamento/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Micelas , Conformação Proteica , Domínios Proteicos , Homologia de Sequência de Aminoácidos
20.
Rev. Fac. Med. UNAM ; 59(3): 36-46, may.-jun. 2016. tab, graf
Artigo em Espanhol | LILACS | ID: biblio-957092

RESUMO

Resumen El uso de los sitios web denominados redes sociales es cada vez más frecuente en la práctica médica. El objetivo de este artículo es proporcionar a los médicos y estudiantes de medicina algunas recomendaciones éticas para tomar en cuenta antes de publicar contenido en la internet. Para ello, ofrece un panorama histórico de la evolución de las redes sociales y presenta diversos ejemplos de los beneficios de usarlas como medios de actualización, de comunicación entre colegas, con pacientes, como medios de promoción de los servicios profesionales y de difusión de eventos. Al final provee de recomendaciones puntuales a tomar en cuenta para hacer un uso efectivo, profesional y ético de ellas.


Abstract The use of Social Networking sites has become very frequent in medicine. This article aims to provide physicians and medical students with ethical recommendations to consider before publishing Web content. For that purpose, we provide a historical overview of the evolution of social networks, and we present several examples of the benefits acquired by using them for knowledge updating, promoting professional services and events, and as communication tools among colleagues and patients. Finally, specific recommendations for an effective, professional and ethical use of these media are given.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...