Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39071416

RESUMO

Introduction: Branch-chain amino acids (BCAA) are markedly elevated in the heart following myocardial infarction (MI) in both humans and animal models. Nevertheless, it remains unclear whether dietary BCAA levels influence post-MI remodeling. We hypothesize that lowering dietary BCAA levels prevents adverse cardiac remodeling after MI. Methods and Results: To assess whether altering dietary BCAA levels would impact circulating BCAA concentrations, mice were fed a low (1/3×), normal (1×), or high (2×) BCAA diet over a 7-day period. We found that mice fed the low BCAA diet had >2-fold lower circulating BCAA concentrations when compared with normal and high BCAA diet feeding strategies; notably, the high BCAA diet did not further increase BCAA levels over the normal chow diet. To investigate the impact of dietary BCAAs on cardiac remodeling and function after MI, male and female mice were fed either the low or high BCAA diet for 2 wk prior to MI and for 4 wk after MI. Although body weights or heart masses were not different in female mice fed the custom diets, male mice fed the high BCAA diet had significantly higher body and heart masses than those on the low BCAA diet. Echocardiographic assessments revealed that the low BCAA diet preserved stroke volume and cardiac output for the duration of the study, while the high BCAA diet led to progressive decreases in cardiac function. Although no discernible differences in cardiac fibrosis, scar collagen topography, or cardiomyocyte cross-sectional area were found between the dietary groups, male mice fed the high BCAA diet showed longer cardiomyocytes and higher capillary density compared with the low BCAA group. Conclusions: Provision of a diet low in BCAAs to mice mitigates eccentric cardiomyocyte remodeling and loss of cardiac function after MI, with dietary effects more prominent in males.

2.
Mol Cell Neurosci ; 59: 97-105, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24521823

RESUMO

A number of genes regulate regeneration of peripheral axons, but their ability to drive axon growth and regeneration in the central nervous system (CNS) remains largely untested. To address this question we overexpressed eight transcription factors and one small GTPase alone and in pairwise combinations to test whether combinatorial overexpression would have a synergistic impact on CNS neuron neurite growth. The Jun oncogene/signal transducer and activator of transcription 6 (JUN/STAT6) combination increased neurite growth in dissociated cortical neurons and in injured cortical slices. In injured cortical slices, JUN overexpression increased axon growth to a similar extent as JUN and STAT6 together. Interestingly, JUN overexpression was not associated with increased growth associated protein 43 (GAP43) or integrin alpha 7 (ITGA7) expression, though these are predicted transcriptional targets. This study demonstrates that JUN overexpression in cortical neurons stimulates axon growth, but does so independently of changes in expression of genes thought to be critical for JUNs effects on axon growth. We conclude that JUN activity underlies this CNS axonal growth response, and that it is mechanistically distinct from peripheral regeneration responses, in which increases in JUN expression coincide with increases in GAP43 expression.


Assuntos
Axônios/metabolismo , Córtex Cerebral/crescimento & desenvolvimento , Proteína Oncogênica p65(gag-jun)/metabolismo , Animais , Antígenos CD/genética , Antígenos CD/metabolismo , Axônios/fisiologia , Células Cultivadas , Córtex Cerebral/citologia , Córtex Cerebral/metabolismo , Proteína GAP-43/genética , Proteína GAP-43/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Células HEK293 , Humanos , Cadeias alfa de Integrinas/genética , Cadeias alfa de Integrinas/metabolismo , Regeneração Nervosa , Neurogênese , Proteína Oncogênica p65(gag-jun)/genética , Ratos , Ratos Sprague-Dawley , Fator de Transcrição STAT6/genética , Fator de Transcrição STAT6/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...