Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-32133302

RESUMO

There is no effective cure for Chagas disease, which is caused by infection with the arthropod-borne parasite, Trypanosoma cruzi. In the search for new drugs to treat Chagas disease, potential therapeutic targets have been identified by exploiting the differences between the mechanisms involved in intracellular Ca2+ homeostasis, both in humans and in trypanosomatids. In the trypanosomatid, intracellular Ca2+ regulation requires the concerted action of three intracellular organelles, the endoplasmic reticulum, the single unique mitochondrion, and the acidocalcisomes. The single unique mitochondrion and the acidocalcisomes also play central roles in parasite bioenergetics. At the parasite plasma membrane, a Ca2+--ATPase (PMCA) with significant differences from its human counterpart is responsible for Ca2+ extrusion; a distinctive sphingosine-activated Ca2+ channel controls Ca2+ entrance to the parasite interior. Several potential anti-trypansosomatid drugs have been demonstrated to modulate one or more of these mechanisms for Ca2+ regulation. The antiarrhythmic agent amiodarone and its derivatives have been shown to exert trypanocidal effects through the disruption of parasite Ca2+ homeostasis. Similarly, the amiodarone-derivative dronedarone disrupts Ca2+ homeostasis in T. cruzi epimastigotes, collapsing the mitochondrial membrane potential (ΔΨm), and inducing a large increase in the intracellular Ca2+ concentration ([Ca2+]i) from this organelle and from the acidocalcisomes in the parasite cytoplasm. The same general mechanism has been demonstrated for SQ109, a new anti-tuberculosis drug with potent trypanocidal effect. Miltefosine similarly induces a large increase in the [Ca2+]i acting on the sphingosine-activated Ca2+ channel, the mitochondrion and acidocalcisomes. These examples, in conjunction with other evidence we review herein, strongly support targeting Ca2+ homeostasis as a strategy against Chagas disease.


Assuntos
Amiodarona , Doença de Chagas , Trypanosoma cruzi , Cálcio , Doença de Chagas/tratamento farmacológico , Homeostase , Humanos
2.
Parasitol Res ; 119(2): 649-657, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31897791

RESUMO

Leishmania donovani is the causative agent of visceral leishmaniasis. Annually, 500 million new cases of infection are reported mainly in poor communities, decreasing the interest of the pharmaceutical industries. Therefore, the repositioning of new drugs is an ideal strategy to fight against these parasites. SQ109, a compound in phase IIb/III of clinical trials to treat resistant Mycobacterium tuberculosis, has a potent effect against Trypanosoma cruzi, responsible for Chagas' disease, and on Leishmania mexicana, the causative agent of cutaneous and muco-cutaneous leishmaniasis. In the latter, the toxic dose against intramacrophagic amastigotes is very low (IC50 ~ 11 nM). The proposed mechanism of action on L. mexicana involves the disruption of the parasite intracellular Ca2+ homeostasis through the collapse of the mitochondrial electrochemical potential (ΔΨm). In the present work, we show a potent effect of SQ109 on L. donovani, the parasite responsible for visceral leishmaniasis, the more severe and uniquely lethal form of these infections, obtaining a toxic effect on amastigotes inside macrophages even lower to that obtained in L. mexicana (IC50 of 7.17 ± 0.09 nM) and with a selectivity index > 800, even higher than in L. mexicana. We also demonstrated for first time that SQ109, besides collapsing ΔΨm of the parasite, induced a very rapid damage to the parasite acidocalcisomes, essential organelles involved in the bioenergetics and many other important functions, including Ca2+ homeostasis. Both effects of the drug on these organelles generated a dramatic increase in the intracellular Ca2+ concentration, causing parasite death.


Assuntos
Adamantano/análogos & derivados , Etilenodiaminas/farmacologia , Leishmania donovani/efeitos dos fármacos , Leishmaniose Cutânea/tratamento farmacológico , Leishmaniose Visceral/tratamento farmacológico , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Adamantano/farmacologia , Animais , Proliferação de Células , Doença de Chagas/tratamento farmacológico , Citoplasma , Humanos , Leishmania mexicana/efeitos dos fármacos , Leishmaniose Cutânea/parasitologia , Leishmaniose Visceral/parasitologia , Macrófagos/parasitologia , Mitocôndrias , Trypanosoma cruzi/efeitos dos fármacos
3.
Parasitol Int ; 70: 112-117, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30794871

RESUMO

Leishmaniasis is a parasitic disease representing an important problem of public health. Visceral leishmaniasis, resulting from infection with Leishmania donovani, causes considerable mortality and morbidity in the poorest region of the word. At present there is no current effective treatment, since the approved, drugs are expensive and are not free of undesirable side effects. Therefore, there is a need for the identification of new drugs. In this context, the parasite Ca2+ regulatory mechanisms in which mitochondria and acidocalcisomes are involved have been postulated as important targets for several trypanocidal drugs. Thus, amiodarone and dronedarone, common human antiarrythmics, exert its known action on these parasites through the disruption of the intracellular Ca2+ homeostasis. AMIODER is a benzofuran derivate based on the structure of amiodarone that recently demonstrates a significant effect on Trypanosoma cruzi. We now report the effect of AMIODER on Leishmania donovani demonstrating that it inhibit the growth of promastigotes and also of amastigotes inside macrophages, the clinically relevant stage of the parasite, obtaining IC50 values significantly lower than those reported for T. cruzi. We also show that this compound disrupted Ca2+ homeostasis in L. donovani, through its action on two organelles involved in the intracellular Ca2+ regulation and on the bioenergetics of the parasite. AMIODER totally collapsed the electrochemical membrane potential of the unique giant mitochondrion and simultaneously induced the alkalinization of acidocalcisomes, driving together to a large increase in the intracellular Ca2+ concentration of the parasite as the main mechanism of action of this benzofurane derivative.


Assuntos
Amiodarona/farmacologia , Benzofuranos/farmacologia , Leishmania donovani/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Tripanossomicidas/farmacologia , Animais , Cálcio/metabolismo , Linhagem Celular , Sobrevivência Celular , Citoplasma/química , Citoplasma/parasitologia , Descoberta de Drogas , Homeostase , Concentração Inibidora 50 , Leishmania donovani/crescimento & desenvolvimento , Leishmania donovani/metabolismo , Leishmaniose Visceral/tratamento farmacológico , Macrófagos/parasitologia , Redes e Vias Metabólicas , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...