Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 56(5): 3225-3233, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35142487

RESUMO

Subsurface microbial (biogenic) methane production is an important part of the global carbon cycle that has resulted in natural gas accumulations in many coal beds worldwide. Laboratory studies suggest that complex carbon-containing nutrients (e.g., yeast or algae extract) can stimulate methane production, yet the effectiveness of these nutrients within coal beds is unknown. Here, we use downhole monitoring methods in combination with deuterated water (D2O) and a 200-liter injection of 0.1% yeast extract (YE) to stimulate and isotopically label newly generated methane. A total dissolved gas pressure sensor enabled real-time gas measurements (641 days preinjection and for 478 days postinjection). Downhole samples, collected with subsurface environmental samplers, indicate that methane increased 132% above preinjection levels based on isotopic labeling from D2O, 108% based on pressure readings, and 183% based on methane measurements 266 days postinjection. Demonstrating that YE enhances biogenic coalbed methane production in situ using multiple novel measurement methods has immediate implications for other field-scale biogenic methane investigations, including in situ methods to detect and track microbial activities related to the methanogenic turnover of recalcitrant carbon in the subsurface.


Assuntos
Carvão Mineral , Metano , Carbono , Gás Natural
2.
Nat Commun ; 11(1): 1428, 2020 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-32188857

RESUMO

The current model for the end-Permian terrestrial ecosystem crisis holds that systematic loss exhibited by an abrupt turnover from the Daptocephalus to the Lystrosaurus Assemblage Zone (AZ; Karoo Basin, South Africa) is time equivalent with the marine Permian-Triassic boundary (PTB). The marine event began at 251.941 ± 0.037 Ma, with the PTB placed at 251.902 ± 0.024 Ma (2σ). Radio-isotopic dates over this interval in the Karoo Basin were limited to one high resolution ash-fall deposit in the upper Daptocephalus AZ (253.48 ± 0.15 (2σ) Ma) with no similar age constraints for the overlying biozone. Here, we present the first U-Pb CA-ID-TIMS zircon age (252.24 ± 0.11 (2σ) Ma) from a pristine ash-fall deposit in the Karoo Lystrosaurus AZ. This date confirms that the lower exposures of the Lystrosaurus AZ are of latest Permian age and that the purported turnover in the basin preceded the end-Permian marine event by over 300 ka, thus refuting the previously used stratigraphic marker for terrestrial end-Permian extinction.

3.
FEMS Microbiol Ecol ; 70(3): 402-12, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19796138

RESUMO

The volcanic Sulphur Springs, St. Lucia, present an extreme environment due to high temperatures, low pH values, and high concentrations of sulfate and boron. St. Lucia offers some unique geochemical characteristics that may shape the microbial communities within the Sulphur Springs area. We chose six pools representing a range of geochemical characteristics for detailed microbial community analyses. Chemical concentrations varied greatly between sites. Microbial diversity was analyzed using 16S rRNA gene clone library analyses. With the exception of one pool with relatively low concentrations of dissolved ions, microbial diversity was very low, with Aquificales sequences dominating bacterial communities at most pools. The archaeal component of all pools was almost exclusively Acidianus spp. and did not vary between sites with different chemical characteristics. In the pool with the highest boron and sulfate concentrations, only archaeal sequences were detected. Compared with other sulfur springs such as those at Yellowstone, the microbial diversity at St. Lucia is very different, but it is similar to that at the nearby Lesser Antilles island of Montserrat. While high elemental concentrations seem to be related to differences in bacterial diversity here, similarities with other Lesser Antilles sites suggest that there may be a biogeographical component as well.


Assuntos
Archaea/isolamento & purificação , Bactérias/isolamento & purificação , Biodiversidade , Boro/química , Fontes Termais/microbiologia , Archaea/genética , Bactérias/genética , DNA Arqueal/genética , DNA Bacteriano/genética , Filogenia , RNA Ribossômico 16S/genética , Santa Lúcia , Análise de Sequência de DNA
4.
Appl Environ Microbiol ; 73(13): 4171-9, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17468287

RESUMO

The diversity of microorganisms active within sedimentary rocks provides important controls on the geochemistry of many subsurface environments. In particular, biodegradation of organic matter in sedimentary rocks contributes to the biogeochemical cycling of carbon and other elements and strongly impacts the recovery and quality of fossil fuel resources. In this study, archaeal diversity was investigated along a salinity gradient spanning 8 to 3,490 mM Cl(-) in a subsurface shale rich in CH(4) derived from biodegradation of sedimentary hydrocarbons. Shale pore waters collected from wells in the main CH(4)-producing zone lacked electron acceptors such as O(2), NO(3)(-), Fe(3+), or SO(4)(2-). Acetate was detected only in high-salinity waters, suggesting that acetoclastic methanogenesis is inhibited at Cl(-) concentrations above approximately 1,000 mM. Most-probable-number series revealed differences in methanogen substrate utilization (acetate, trimethylamine, or H(2)/CO(2)) associated with chlorinity. The greatest methane production in enrichment cultures was observed for incubations with salinity at or close to the native pore water salinity of the inoculum. Restriction fragment length polymorphism analyses of archaeal 16S rRNA genes from seven wells indicated that there were links between archaeal communities and pore water salinity. Archaeal clone libraries constructed from sequences from 16S rRNA genes isolated from two wells revealed phylotypes similar to a halophilic methylotrophic Methanohalophilus species and a hydrogenotrophic Methanoplanus species at high salinity and a single phylotype closely related to Methanocorpusculum bavaricum at low salinity. These results show that several distinct communities of methanogens persist in this subsurface, CH(4)-producing environment and that each community is adapted to particular conditions of salinity and preferential substrate use and each community induces distinct geochemical signatures in shale formation waters.


Assuntos
Archaea/genética , Archaea/metabolismo , Metano/metabolismo , Microbiologia do Solo , Solo/análise , Archaea/classificação , Archaea/isolamento & purificação , Sequência de Bases , Clonagem Molecular , Primers do DNA/genética , Genes Arqueais , Variação Genética , Sedimentos Geológicos/análise , Sedimentos Geológicos/microbiologia , Michigan , Dados de Sequência Molecular , Compostos Orgânicos/análise , Filogenia , RNA Arqueal/genética , RNA Ribossômico 16S/genética , Cloreto de Sódio/análise , Microbiologia da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...