Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Swiss J Palaeontol ; 142(1): 18, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37706074

RESUMO

Coelacanths form today an impoverished clade of sarcopterygian fishes, which were somewhat more diverse during their evolutionary history, especially in the Triassic. Since the first description of the coelacanth Ticinepomis peyeri from the Besano Formation of the UNESCO World Heritage Site of Monte San Giorgio (Canton Ticino, Switzerland), the diversity of coelacanths in the Middle Triassic of this area of the western Paleo-Tethys has been enriched with discoveries of other fossil materials. At Monte San Giorgio, two specimens of Heptanema paradoxum and several specimens of the unusual coelacanth Rieppelia heinzfurreri, have been reported from the Meride Limestone and the Besano Formation, respectively. Another unusual coelacanth, Foreyia maxkuhni, and two specimens referred to Ticinepomis cf. T. peyeri have been described from the isochronous and paleogeographical close Prosanto Formation at the Ducanfurgga and Strel sites (near Davos, Canton Graubünden). In the framework of the revision of the coelacanth material from the Besano Formation kept in the collection of the Paläontologisches Institut und Museum der Universität Zürich (Switzerland), we reviewed the genus Ticinepomis on the basis of the holotype and four new referred specimens. Several morphological traits that were little and/or not understood in T. peyeri are here clarified. We re-evaluate the taxonomic attribution of the material of Ticinepomis cf. T. peyeri from the Prosanto Formation. Morphological characters are different enough from the type species, T. peyeri, to erect a new species, Ticinepomis ducanensis sp. nov., which is shown to be also present in the Besano Formation of Monte San Giorgio, where it is represented by fragmentary bone elements. The recognition of a new coelacanth species indicates that the diversity of this slow-evolving lineage was particularly high in this part of the Western Tethys during the Middle Triassic, especially between 242 and 240 million years ago.

2.
PLoS One ; 14(10): e0223490, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31609985

RESUMO

Unless they adapt, populations facing persistent stress are threatened by extinction. Theoretically, populations facing stress can react by either disruption (increasing trait variation and potentially generating new traits) or stabilization (decreasing trait variation). In the short term, stabilization is more economical, because it quickly transfers a large part of the population closer to a new ecological optimum. However, stabilization is deleterious in the face of persistently increasing stress, because it reduces variability and thus decreases the ability to react to further changes. Understanding how natural populations react to intensifying stress reaching terminal levels is key to assessing their resilience to environmental change such as that caused by global warming. Because extinctions are hard to predict, observational data on the adaptation of populations facing extinction are rare. Here, we make use of the glacial salinity rise in the Red Sea as a natural experiment allowing us to analyse the reaction of planktonic Foraminifera to stress escalation in the geological past. We analyse morphological trait state and variation in two species across a salinity rise leading to their local extinction. Trilobatus sacculifer reacted by stabilization in shape and size, detectable several thousand years prior to extinction. Orbulina universa reacted by trait divergence, but each of the two divergent populations remained stable or reacted by further stabilization. These observations indicate that the default reaction of the studied Foraminifera is stabilization, and that stress escalation did not lead to the emergence of adapted forms. An inherent inability to breach the global adaptive threshold would explain why communities of Foraminifera and other marine protists reacted to Quaternary climate change by tracking their zonally shifting environments. It also means that populations of marine plankton species adapted to response by migration will be at risk of extinction when exposed to stress outside of the adaptive range.


Assuntos
Extinção Biológica , Foraminíferos , Seleção Genética , Ecossistema , Foraminíferos/fisiologia , Oceano Índico , Densidade Demográfica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...