Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Ecol Evol ; 10(21): 12147-12156, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33209277

RESUMO

Extreme weather events (EWEs) are expected to increase in stochasticity, frequency, and intensity due to climate change. Documented effects of EWEs, such as droughts, hurricanes, and temperature extremes, range from shifting community stable states to species extirpations. To date, little attention has been paid to how populations resist and/or recover from EWEs through compensatory (behavioral, demographic, or physiological) mechanisms; limiting the capacity to predict species responses to future changes in EWEs. Here, we systematically reviewed the global variation in species' demographic responses, resistance to, and recovery from EWEs across weather types, species, and biogeographic regions. Through a literature review and meta-analysis, we tested the prediction that population abundance and probability of persistence will decrease in populations after an EWE and how compensation affects that probability. Across 524 species population responses to EWEs reviewed (27 articles), we noted large variation in responses, such that, on average, the effect of EWEs on population demographics was not negative as predicted. The majority of species populations (80.4%) demonstrated compensatory mechanisms during events to reduce their deleterious effects. However, for populations that were negatively impacted, the demographic consequences were severe. Nearly 20% of the populations monitored experienced declines of over 50% after an EWE, and 6.8% of populations were extirpated. Population declines were reflected in a reduction in survival. Further, resilience was not common, as 80.0% of populations that declined did not recover to before EWE levels while monitored. However, average monitoring time was only two years with over a quarter of studies tracking recovery for less than the study species generation time. We conclude that EWEs have positive and negative impacts on species demography, and this varies by taxa. Species population recovery over short-time intervals is rare, but long-term studies are required to accurately assess species resilience to current and future events.

3.
J Anim Ecol ; 89(9): 2156-2167, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32686089

RESUMO

Scavenging by vertebrates can have important impacts on food web stability and persistence, and can alter the distribution of nutrients throughout the landscape. However, scavenging communities have been understudied in most regions around the globe, and we lack understanding of the biotic drivers of vertebrate scavenging dynamics. In this paper, we examined how changes in prey density and carrion biomass caused by population cycles of a primary prey species, the snowshoe hare Lepus americanus, influence scavenging communities in the northern boreal forest. We further examined the impact of habitat and temperature on scavenging dynamics. We monitored the persistence time, time until first scavenger, and number of species scavenging experimentally-placed hare carcasses over four consecutive years in the southwestern Yukon. We simultaneously monitored hare density and carrion biomass to examine their influence relative to temperature, habitat, and seasonal effects. For the primary scavengers, we developed species-specific scavenging models to determine variation on the effects of these factors across species, and determine which species may be driving temporal patterns in the entire community. We found that the efficiency of the scavenging community was affected by hare density, with carcass persistence decreasing when snowshoe hare densities declined, mainly due to increased scavenging rates by Canada lynx Lynx canadensis. However, prey density did not influence the number of species scavenging a given carcass, suggesting prey abundance affects carrion recycling but not necessarily the number of connections in the food web. In addition, scavenging rates increased in warmer temperatures, and there were strong seasonal effects on the richness of the vertebrate scavenging community. Our results demonstrate that vertebrate scavenging communities are sensitive to changes in species' demography and environmental change, and that future assessments of food web dynamics should consider links established through scavenging.


Assuntos
Comportamento Predatório , Taiga , Animais , Canadá , Ecossistema , Temperatura , Yukon
4.
Sci Rep ; 10(1): 11489, 2020 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-32661272

RESUMO

Wildlife passages are structures built across roads to facilitate wildlife movement and prevent wildlife collisions with vehicles. The efficacy of these structures could be reduced if they funnel prey into confined spaces at predictable locations that are exploited by predators. We tested the so-called prey-trap hypothesis using remote cameras in 17 wildlife passages in Quebec, Canada from 2012 to 2015 by measuring the temporal occurrence of nine small and medium-sized mammal taxa (< 30 kg) that we classified as predators and prey. We predicted that the occurrence of a prey-trap would be evidenced by greater frequencies and shorter latencies of sequences in which predators followed prey, relative to prey-prey sequences. Our results did not support the prey-trap hypothesis; observed prey-predator sequences showed no difference or were less frequent than expected, even when prey were unusually abundant or rare or at sites with higher proportions of predators. Prey-predator latencies were also 1.7 times longer than prey-prey sequences. These results reveal temporal clustering of prey that may dilute predation risk inside wildlife passages. We encourage continued use of wildlife passages as mitigation tools.


Assuntos
Acidentes de Trânsito/prevenção & controle , Animais Selvagens/fisiologia , Dinâmica Populacional , Gravação em Vídeo , Animais , Canadá , Análise por Conglomerados , Mamíferos/fisiologia , Comportamento Predatório/fisiologia , Quebeque
5.
J Anim Ecol ; 89(6): 1408-1418, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32307710

RESUMO

Juvenile survival to first breeding is a key life-history stage for all taxa. Survival through this period can be particularly challenging when it coincides with harsh environmental conditions such as a winter climate or food scarcity, leading to highly variable cohort survival. However, the small size and dispersive nature of juveniles generally make studying their survival more difficult. In territorial species, a key life-history event is the acquisition of a territory. A territory is expected to enhance survival, but how it does so is not often identified. We tested how the timing of territory acquisition influenced the winter survival of juvenile North American red squirrels Tamiasciurus hudsonicus, hereafter red squirrels, and how the timing of this event mediated the sources of mortality. We hypothesized that securing a territory prior to when food resources become available would reduce juvenile susceptibility to predation and climatic factors overwinter. Using 27 years of data on the survival of individually marked juvenile red squirrels, we tested how the timing of territory acquisition influenced survival, whether the population density of red squirrel predators and mean temperature overwinter were related to individual survival probability, and if territory ownership mediated these effects. Juvenile red squirrel survival was lower in the years of high predator abundance and in colder winters. Autumn territory owners were less susceptible to lynx Lynx canadensis and possibly mustelid Mustela and Martes spp., predation. Autumn territory owners had lower survival in colder winters, but surprisingly non-owners had higher survival in cold winters. Our results show how the timing of a life-history event like territory acquisition can directly affect survival and also mediate the effects of biotic and abiotic factors later in life. This engenders a better understanding of the fitness consequences of the timing of key life-history events.


Assuntos
Lynx , Sciuridae , Animais , Densidade Demográfica , Comportamento Predatório , Estações do Ano
6.
Ecol Lett ; 23(3): 430-438, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31833181

RESUMO

Dispersal is nearly universal; yet, which sex tends to disperse more and their success thereafter depends on the fitness consequences of dispersal. We asked if lifetime fitness differed between residents and immigrants (successful between-population dispersers) and their offspring using 29 years of monitoring from North American red squirrels (Tamiasciurus hudsonicus) in Canada. Compared to residents, immigrant females had 23% lower lifetime breeding success (LBS), while immigrant males had 29% higher LBS. Male immigration and female residency were favoured. Offspring born to immigrants had 15-43% lower LBS than offspring born to residents. We conclude that immigration benefitted males, but not females, which appeared to be making the best of a bad lot. Our results are in line with male-biased dispersal being driven by local mate competition and local resource enhancement, while the intergenerational cost to immigration is a new complication in explaining the drivers of sex-biased dispersal.


Assuntos
Emigrantes e Imigrantes , Reprodução , Cruzamento , Canadá , Feminino , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...