Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecotoxicology ; 32(1): 1-11, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36542231

RESUMO

Pharmaceuticals belong to pseudo-persistent pollutants because of constant entry into the environment and hazardous potential for non-target organisms, including plants, in which they can influence biochemical and physiological processes. Detailed analysis of results obtained by microscopic observations using fluorescent dyes (berberine hemisulphate, Fluorol Yellow 088), detection of phytohormone levels (radioimmunoassay, enzyme-linked immune sorbent assay) and thermogravimetric analysis of lignin content proved that the drug naproxen (NPX) can stimulate the formation of root structural barriers. In the primary root of plants treated with 0.5, 1, and 10 mg/L NPX, earlier Casparian strip formation and development of the whole endodermis circle closer to its apex were found after five days of cultivation (by 9-20% as compared to control) and after ten days from 0.1 mg/L NPX (by 8-63%). Suberin lamellae (SL) were deposited in endodermal cells significantly closer to the apex under 10 mg/L NPX by up to 75%. Structural barrier formation under NPX treatment can be influenced indirectly by auxin-supported cell division and differentiation caused by its eight-times higher level under 10 mg/L NPX and directly by stimulated SL deposition induced by abscisic acid (higher from 0.5 mg/L NPX), as proved by the higher proportion of cells with SL in the primary root base (by 8-44%). The earlier modification of endodermis in plant roots can help to limit the drug transfer and maintain the homeostasis of the plant.


Assuntos
Ácido Abscísico , Naproxeno , Naproxeno/toxicidade , Ácidos Indolacéticos/análise , Pisum sativum , Raízes de Plantas/química
2.
Planta ; 253(2): 29, 2021 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-33423117

RESUMO

MAIN CONCLUSION: Silicon inhibits the growth of Alternaria alternata into sorghum root cells by maintaining their integrity through stimulating biochemical defense reactions rather than by silica-based physical barrier creation. Although the ameliorating effect of silicon (Si) on plant resistance against fungal pathogens has been proven, the mechanism of its action needs to be better understood on a cellular level. The present study explores the effect of Si application in sorghum roots infected with fungus Alternaria alternata under controlled in vitro conditions. Detailed anatomical and cytological observations by both fluorescent and electron microscopy revealed that Si supplementation results in the inhibition of fungal hyphae growth into the protoplast of root cells. An approach of environmental scanning electron microscopy equipped with energy-dispersive X-ray spectroscopy enabling spatial detection of Si even at low concentrations showed that there is no continual solid layer of silica in the root cell walls of the rhizodermis, mesodermis and exodermis physically blocking the fungal growth into the protoplasts. Additionally, biochemical evidence suggests that Si speeds up the onset of activities of phenylpropanoid pathway enzymes phenylalanine ammonia lyase, peroxidases and polyphenol oxidases involved in phenolic compounds production and deposition to plant cell walls. In conclusion, Si alleviates the negative impact of A. alternata infection by limiting hyphae penetration through sorghum root cell walls into protoplasts, thus maintaining their structural and functional integrity. This might occur by triggering plant biochemical defense responses rather than by creating compact Si layer deposits.


Assuntos
Alternaria , Raízes de Plantas , Silício , Sorghum , Alternaria/efeitos dos fármacos , Fenilalanina Amônia-Liase , Doenças das Plantas/microbiologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/enzimologia , Raízes de Plantas/microbiologia , Silício/farmacologia , Sorghum/efeitos dos fármacos , Sorghum/enzimologia , Sorghum/microbiologia
3.
J Exp Bot ; 71(21): 6744-6757, 2020 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-32569367

RESUMO

Silicon (Si), although not considered as an essential element for plants in general, can ameliorate the phytotoxicity induced by excess metal(loid)s whether non-essential (e.g. Cd, Pb, Cr, Al, As, and Sb) or essential (e.g. Cu, Ni, and Zn). The Si-enhanced resistance allowing plants to cope with this type of abiotic stress has been developed at multiple levels in plants. Restriction of root uptake and immobilization of metal(loid)s in the rhizosphere by Si is probably one of the first defence mechanism. Further, retention of elements in the root apoplasm might enhance the resistance and vigour of plants. At the cellular level, the formation of insoluble complexes between Si and metal(loid)s and their storage within cell walls help plants to decrease available element concentration and restrict symplasmic uptake. Moreover, Si influences the oxidative status of plants by modifying the activity of various antioxidants, improves membrane stability, and acts on gene expression, although its exact role in these processes is still not well understood. This review focuses on all currently known plant-based mechanisms related to Si supply and involved in amelioration of stress caused by excess metal(loid)s.


Assuntos
Silício , Poluentes do Solo , Transporte Biológico , Metais , Plantas , Rizosfera
4.
Plants (Basel) ; 9(1)2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31952260

RESUMO

Silicon (Si) is not considered an essential element, however, its tissue concentration can exceed that of many essential elements in several evolutionary distant plant species. Roots take up Si using Si transporters and then translocate it to aboveground organs. In some plant species, root tissues are also places where a high accumulation of Si can be found. Three basic modes of Si deposition in roots have been identified so far: (1) impregnation of endodermal cell walls (e.g., in cereals, such as Triticum (wheat)); (2) formation of Si-aggregates associated with endodermal cell walls (in the Andropogoneae family, which includes Sorghum and Saccharum (sugarcane)); (3) formation of Si aggregates in "stegmata" cells, which form a sheath around sclerenchyma fibers e.g., in some palm species (Phoenix (date palm)). In addition to these three major and most studied modes of Si deposition in roots, there are also less-known locations, such as deposits in xylem cells and intercellular deposits. In our research, the ontogenesis of individual root cells that accumulate Si is discussed. The documented and expected roles of Si deposition in the root is outlined mostly as a reaction of plants to abiotic and biotic stresses.

5.
Sci Rep ; 9(1): 4466, 2019 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-30872791

RESUMO

Acanthamoebae success as human pathogens is largely due to the highly resistant cysts which represent a crucial problem in treatment of Acanthamoeba infections. Hence, the study of cyst wall composition and encystment play an important role in finding new therapeutic strategies. For the first time, we detected high activity of cytoskeletal elements - microtubular networks and filamentous actin, in late phases of encystment. Cellulose fibrils - the main components of endocyst were demonstrated in inter-cystic space, and finally in the ectocyst, hereby proving the presence of cellulose in both layers of the cyst wall. We detected clustering of intramembranous particles (IMPs) and their density alterations in cytoplasmic membrane during encystment. We propose a hypothesis that in the phase of endocyst formation, the IMP clusters represent cellulose microfibril terminal complexes involved in cellulose synthesis that after cyst wall completion are reduced. Cyst wall impermeability, due largely to a complex polysaccharide (glycans, mainly cellulose) has been shown to be responsible for Acanthamoeba biocide resistance and cellulose biosynthesis pathway is suggested to be a potential target in treatment of Acanthamoeba infections. Disruption of this pathway would affect the synthesis of cyst wall and reduce considerably the resistance to chemotherapeutic agents.


Assuntos
Acanthamoeba/ultraestrutura , Amebíase/parasitologia , Parede Celular/ultraestrutura , Celulose/metabolismo , Acanthamoeba/isolamento & purificação , Acanthamoeba/metabolismo , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Parede Celular/metabolismo , Citoesqueleto/metabolismo , Citoesqueleto/ultraestrutura , Humanos , Microscopia Confocal , Microscopia Eletrônica , Microtúbulos/metabolismo , Microtúbulos/ultraestrutura
6.
Ann Bot ; 122(5): 903-914, 2018 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-29394308

RESUMO

Background and Aims: Root hairs increase the contact area of roots with soil and thereby enhance the capacity for solute uptake. The strict hair/non-hair pattern of Arabidopsis thaliana can change with nutrient deficiency or exposure to toxic elements, which modify root hair density. The effects of root hair density on cadmium (Cd) accumulation in shoots of arabidopsis genotypes with altered root hair development and patterning were studied. Methods: Arabidopsis mutants that are unable to develop root hairs (rhd6-1 and cpc/try) or produce hairy roots (wer/myb23) were compared with the ecotype Columbia (Col-0). Plants were cultivated on nutrient agar for 2 weeks with or without Cd. Cadmium was applied as Cd(NO3)2 at two concentrations, 10 and 100 µm. Shoot biomass, root characteristics (primary root length, lateral root number, lateral root length and root hair density) and Cd concentrations in shoots were assessed. Anatomical features (suberization of the endodermis and development of the xylem) that might influence Cd uptake and translocation were also examined. Key Results: Cadmium inhibited plant growth and reduced root length and the number of lateral roots and root hairs per plant. Suberin lamellae in the root endodermis and xylem differentiation developed closer to the root apex in plants exposed to 100 µm Cd. The latter effect was genotype dependent. Shoot Cd accumulation was correlated with root hair abundance when plants were grown in the presence of 10 µm Cd, but not when grown in the presence of 100 µm Cd, in which treatment the development of suberin lamellae closer to the root tip appeared to restrict Cd accumulation in shoots. Conclusions: Root hair density can have a large effect on Cd accumulation in shoots, suggesting that the symplasmic pathway might play a significant role in the uptake and accumulation of this toxic element.


Assuntos
Arabidopsis/fisiologia , Cádmio/metabolismo , Raízes de Plantas/fisiologia , Brotos de Planta/metabolismo , Poluentes do Solo/metabolismo , Arabidopsis/genética , Transporte Biológico , Raízes de Plantas/genética
7.
Ann Bot ; 120(5): 739-753, 2017 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-28651339

RESUMO

Background and Aims: Deposition of silica in plant cell walls improves their mechanical properties and helps plants to withstand various stress conditions. Its mechanism is still not understood and silica-cell wall interactions are elusive. The objective of this study was to investigate the effect of silica deposition on the development and structure of sorghum root endodermis and to identify the cell wall components involved in silicification. Methods: Sorghum bicolor seedlings were grown hydroponically with (Si+) or without (Si-) silicon supplementation. Primary roots were used to investigate the transcription of silicon transporters by quantitative RT-PCR. Silica aggregation was induced also under in vitro conditions in detached root segments. The development and architecture of endodermal cell walls were analysed by histochemistry, microscopy and Raman spectroscopy. Water retention capability was compared between silicified and non-silicified roots. Raman spectroscopy analyses of isolated silica aggregates were also carried out. Key Results: Active uptake of silicic acid is provided at the root apex, where silicon transporters Lsi1 and Lsi2 are expressed. The locations of silica aggregation are established during the development of tertiary endodermal cell walls, even in the absence of silicon. Silica aggregation takes place in non-lignified spots in the endodermal cell walls, which progressively accumulate silicic acid, and its condensation initiates at arabinoxylan-ferulic acid complexes. Silicification does not support root water retention capability; however, it decreases root growth inhibition imposed by desiccation. Conclusion: A model is proposed in which the formation of silica aggregates in sorghum roots is predetermined by a modified cell wall architecture and takes place as governed by endodermal development. The interaction with silica is provided by arabinoxylan-ferulic acid complexes and interferes with further deposition of lignin. Due to contrasting hydrophobicity, silicification and lignification do not represent functionally equivalent modifications of plant cell walls.


Assuntos
Raízes de Plantas/crescimento & desenvolvimento , Dióxido de Silício/química , Sorghum/crescimento & desenvolvimento , Parede Celular/química , Raízes de Plantas/metabolismo , Sorghum/metabolismo
8.
Ann Bot ; 118(4): 667-674, 2016 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-27112163

RESUMO

Background and Aims In the present study, we show that development of endodermis and exodermis is sensitively regulated by water accessibility. As cadmium (Cd) is known to induce xeromorphic effects in plants, maize roots were exposed also to Cd to understand the developmental process of suberin lamella deposition in response to a local Cd source. Methods In a first experiment, maize roots were cultivated in vitro and unilaterally exposed to water-containing medium from one side and to air from the other. In a second experiment, the roots were placed between two agar medium layers with a strip of Cd-containing medium attached locally and unilaterally to the root surface. Key Results The development of suberin lamella (the second stage of exodermal and endodermal development) started asymmetrically, preferentially closer to the root tip on the side exposed to the air. In the root contact with Cd in a spatially limited area exposed to one side of the root, suberin lamella was preferentially developed in the contact region and additionally along the whole length of the root basipetally from the contact area. However, the development was unilateral and asymmetrical, facing the treated side. The same pattern occurred irrespective of the distance of Cd application from the root apex. Conclusions These developmental characteristics indicate a sensitive response of root endodermis and exodermis in the protection of vascular tissues against abiotic stresses.

9.
J Cutan Med Surg ; 20(6): 532-535, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26676952

RESUMO

BACKGROUND: The incidence of melanoma is increasing annually in Canada. OBJECTIVES: This retrospective study was designed to assess the ability of physicians of different specialties to accurately recognize melanoma. METHODS: Pathology reports of biopsies submitted to Vancouver Coastal Health with clinical diagnoses of melanoma were reviewed (January to July 2013). The clinical diagnoses made by dermatologists, general practitioners and family physicians, and all other specialists were correlated with the final histopathologic diagnoses. RESULTS: The dermatologists, general practitioners and family physicians, and all other specialists achieved diagnostic accuracies of 24.75%, 3.52%, and 12.75%, respectively. CONCLUSIONS: Although the diagnostic accuracy of dermatologists was significantly better than that the other practitioners, the majority of patients with suspicious skin lesions present to family physicians or general practitioners first. Thus, there is considerable value in providing more training and education to nondermatologists, because it can have a meaningful impact on patient care.


Assuntos
Competência Clínica , Dermatologia/estatística & dados numéricos , Erros de Diagnóstico , Medicina de Família e Comunidade/estatística & dados numéricos , Melanoma/diagnóstico , Neoplasias Cutâneas/diagnóstico , Dermatologia/normas , Medicina de Família e Comunidade/normas , Humanos , Estudos Retrospectivos
10.
Acta Biol Hung ; 66(2): 192-204, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26081275

RESUMO

Effects of CdCl2, NiCl2 or both on superoxide production, viability and membrane potential (EM) of root cells in meristematic (MZ) and differentiation (DZ) zones of two maize cultivars (cv. Premia and cv. Blitz) were studied. Plants were supplied with 10 and 100 µM concentrations of heavy metals (HM). The responses in the studied parameters to HM were concentration- and time-dependent, and were found only in the cells of MZ. The treatment of roots with Cd-stimulated massive superoxide production, although to different extent depending on the cultivar, root zone, and metal concentration. The stimulating effect of Ni on oxidative burst in Cd-treated maize roots was related to an increased Cd-induced superoxide production. The cell death appeared between 24 and 48 h and between 12 and 24 h of the 10 µM and 100 µM metal treatments, respectively. This was in accordance with Cd-induced ROS (superoxide) production and the EM decline in the corresponding time periods. Cell viability, EM changes and partially superoxide production indicate that the impact of the metals on the studied parameters declined in the order Cd+Ni > Cd > Ni and that cv. Blitz tends to respond more sensitively than cv. Premia.


Assuntos
Cádmio/farmacologia , Potenciais da Membrana/efeitos dos fármacos , Meristema/metabolismo , Níquel/farmacologia , Zea mays/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Meristema/citologia , Superóxidos/metabolismo , Zea mays/citologia
11.
Ann Bot ; 115(7): 1149-54, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25939652

RESUMO

BACKGROUND AND AIMS: Contractile roots are known and studied mainly in connection with the process of shrinkage of their basal parts, which acts to pull the shoot of the plant deeper into the ground. Previous studies have shown that the specific structure of these roots results in more intensive water uptake at the base, which is in contrast to regular root types. The purpose of this study was to find out whether the basal parts of contractile roots are also more active in translocation of cadmium to the shoot. METHODS: Plants of the South African ornamental species Tritonia gladiolaris were cultivated in vitro for 2 months, at which point they possessed well-developed contractile roots. They were then transferred to Petri dishes with horizontally separated compartments of agar containing 50 µmol Cd(NO3)2 in the region of the root base or the root apex. Seedlings of 4-d-old maize (Zea mays) plants, which do not possess contractile roots, were also transferred to similar Petri dishes. The concentrations of Cd in the leaves of the plants were compared after 10 d of cultivation. Anatomical analyses of Tritonia roots were performed using appropriately stained freehand cross-sections. KEY RESULTS: The process of contraction required specific anatomical adaptation of the root base in Tritonia, with less lignified and less suberized tissues in comparison with the subapical part of the root. These unusual developmental characteristics were accompanied by more intensive translocation of Cd ions from the basal part of contractile roots to the leaves than from the apical-subapical root parts. The opposite effects were seen in the non-contractile roots of maize, with higher uptake and transport by the apical parts of the root and lower uptake and transport by the basal part. CONCLUSIONS: The specific characteristics of contractile roots may have a significant impact on the uptake of ions, including toxic metals from the soil surface layers. This may be important for plant nutrition, for example in the uptake of nutrients from upper soil layers, which are richer in humus in otherwise nutrient-poor soils, and also has implications for the uptake of surface-soil pollutants.


Assuntos
Cádmio/metabolismo , Iridaceae/metabolismo , Raízes de Plantas/metabolismo , Poluentes do Solo/metabolismo , Zea mays/metabolismo , Iridaceae/anatomia & histologia , Folhas de Planta/química , Raízes de Plantas/anatomia & histologia , Zea mays/anatomia & histologia
12.
Planta ; 240(6): 1365-72, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25262423

RESUMO

Silica phytoliths are microscopic structures of amorphous hydrated silica (SiO2 · nH2O) formed by specialized plant cells. Besides their biological roles, physical, chemical, and structural properties of biogenic silica offer a wide spectrum of applications in many fields of industry and technology. Therefore, processes involved in their formation recently become a very interesting topic to study. However, optical transparency and microscopic sizes of silica phytoliths do not allow their visualization and localization by classical light microscopy methods. Their observation thus requires phytolith isolation, technically difficult or lengthy sample preparation procedures, or a work with toxic chemicals. In this paper we are proposing a novel method for visualization of silica phytoliths in Sorghum bicolor root endodermal cells by fluorescence microscopy using alkali mounting solution (pH 12). This method offers an easy and quick preparation of the samples and high contrast imaging. Based on our results we can assume that the proposed fluorescent method for silica phytolith investigation allows observation of multiple samples in relatively short time period and thus might be applicable also for high-throughput screenings. Using this method we found out that after a 3-day cultivation of sorghum plants the minimal needed concentration of sodium silicate, limiting the formation of silica phytoliths in the root endodermis, was 25 µmol dm(-3). The positive correlation of sodium silicate concentration in the substrate with the phytolith diameter was also observed.


Assuntos
Microscopia de Fluorescência/métodos , Células Vegetais/metabolismo , Dióxido de Silício/metabolismo , Sorghum/metabolismo , Concentração de Íons de Hidrogênio , Raízes de Plantas/citologia , Raízes de Plantas/metabolismo , Silicatos/metabolismo , Soluções , Espectrometria de Fluorescência , Fatores de Tempo
13.
Planta ; 239(5): 1055-64, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24519545

RESUMO

Cadmium uptake, tissue localization and structural changes induced at cellular level are essential to understand Cd tolerance in plants. In this study we have exposed plants of Pteris vittata to different concentrations of CdCl2 (0, 30, 60, 100 µM) to evaluate the tolerance of the fern to cadmium. Cadmium content determination and its histochemical localization showed that P. vittata not only takes up, but also transports and accumulates cadmium in the aboveground tissues, delocalizing it mainly in the less bioactive tissues of the frond, the trichomes and the scales. Cadmium tolerance in P. vittata was strictly related to morphogenic response induced by the metal itself in the root system. Adaptive response regarded changes of the root apex size, the developmental pattern of root hairs, the differentiation of xylem elements and endodermal suberin lamellae. All the considered parameters suggest that, in our experimental conditions, 60 µM of Cd may represent the highest concentration that P. vittata can tolerate; indeed this Cd level even improves the absorbance features of the root and allows good transport and accumulation of the metal in the fronds. The results of this study can provide useful information for phytoremediation strategies of soils contaminated by Cd, exploiting the established ability of P. vittata to transport, delocalize in the aboveground biomass and accumulate polluting metals.


Assuntos
Cádmio/metabolismo , Cádmio/toxicidade , Morfogênese/efeitos dos fármacos , Pteris/crescimento & desenvolvimento , Pteris/fisiologia , Estresse Fisiológico/efeitos dos fármacos , Ditizona/farmacologia , Meristema/anatomia & histologia , Meristema/efeitos dos fármacos , Meristema/crescimento & desenvolvimento , Meristema/ultraestrutura , Pteris/efeitos dos fármacos
14.
Int J Phytoremediation ; 15(2): 117-26, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23487990

RESUMO

The use of plant growth regulators is well established and they are used in many fields of plant science for enhancing growth. Brassica juncea plants were treated with 2.5, 5.0 and 7.5 microM auxin indole-3-butyric acid (IBA), which promotes rooting. The IBA-treated plants were also sprayed with 100 microM gibberellic acid (GA3) and kinetin (Kin) to increase leaf-foliage. Gold (I) chloride (AuCl) was added to the growth medium of plants to achieve required gold concentration. The solubilizing agent ammonium thiocyanate (1 g kg(-1)) (commonly used in mining industries to solubilize gold) was added to the nutrient solution after six weeks of growth and, two weeks later, plants were harvested. Plant growth regulators improved shoot and root dry biomass of B. juncea plants. Inductively Coupled Plasma Optical Emission Spectrometry analysis showed the highest Au uptake for plants treated with 5.0 microM IBA. The average recovery of Au with this treatment was significantly greater than the control treatment by 45.8 mg kg(-1) (155.7%). The other IBA concentrations (2.5 and 7.5 microM) also showed a significant increase in Au uptake compared to the control plants by 14.7 mg kg(-1) (50%) and 42.5 mg kg(-1) (144.5%) respectively. A similar trend of Au accumulation was recorded in the roots of B. juncea plants. This study conducted in solution culture suggests that plant growth regulators can play a significant role in improving phytoextraction of Au.


Assuntos
Ouro/metabolismo , Ácidos Indolacéticos/farmacologia , Mostardeira/efeitos dos fármacos , Reguladores de Crescimento de Plantas/farmacologia , Biodegradação Ambiental , Biomassa , Relação Dose-Resposta a Droga , Ouro/análise , Hidroponia , Mostardeira/crescimento & desenvolvimento , Mostardeira/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo
16.
Ann Bot ; 110(2): 361-71, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22645115

RESUMO

BACKGROUND AND AIMS: Apoplasmic barriers in plants fulfil important roles such as the control of apoplasmic movement of substances and the protection against invasion of pathogens. The aim of this study was to describe the development of apoplasmic barriers (Casparian bands and suberin lamellae) in endodermal cells of Arabidopsis thaliana primary root and during lateral root initiation. METHODS: Modifications of the endodermal cell walls in roots of wild-type Landsberg erecta (Ler) and mutants with defective endodermal development - scarecrow-3 (scr-3) and shortroot (shr) - of A. thaliana plants were characterized by light, fluorescent, confocal laser scanning, transmission and cryo-scanning electron microscopy. KEY RESULTS: In wild-type plant roots Casparian bands initiate at approx. 1600 µm from the root cap junction and suberin lamellae first appear on the inner primary cell walls at approx. 7000-8000 µm from the root apex in the region of developing lateral root primordia. When a single cell replaces a pair of endodermal and cortical cells in the scr-3 mutant, Casparian band-like material is deposited ectopically at the junction between this 'cortical' cell and adjacent pericycle cells. Shr mutant roots with an undeveloped endodermis deposit Casparian band-like material in patches in the middle lamellae of cells of the vascular cylinder. Endodermal cells in the vicinity of developing lateral root primordia develop suberin lamellae earlier, and these are thicker, compared wih the neighbouring endodermal cells. Protruding primordia are protected by an endodermal pocket covered by suberin lamellae. CONCLUSIONS: The data suggest that endodermal cell-cell contact is required for the spatial control of Casparian band development. Additionally, the endodermal cells form a collet (collar) of short cells covered by a thick suberin layer at the base of lateral root, which may serve as a barrier constituting a 'safety zone' protecting the vascular cylinder against uncontrolled movement of water, solutes or various pathogens.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Parede Celular/ultraestrutura , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/ultraestrutura , Arabidopsis/genética , Transporte Biológico/genética , Parede Celular/genética , Raízes de Plantas/genética , Raízes de Plantas/metabolismo
17.
Ann Bot ; 110(2): 475-8, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22419758

RESUMO

BACKGROUND AND AIMS: Cutting plant material is essential for observing internal structures and may be difficult for various reasons. Most fixation agents such as aldehydes, as well as embedding resins, do not allow subsequent use of fluorescent staining and make material too soft to make good-quality hand-sections. Moreover, cutting thin roots can be very difficult and time consuming. A new, fast and effective method to provide good-quality sections and fluorescent staining of fresh or fixed root samples, including those of very thin roots (such as Arabidopsis or Noccaea), is described here. METHODS: To overcome the above-mentioned difficulties the following procedure is proposed: fixation in methanol (when fresh material cannot be used) followed by en bloc staining with toluidine blue, embedding in 6 % agarose, preparation of free-hand sections of embedded material, staining with fluorescent dye, and observation in a microscope under UV light. KEY RESULTS: Despite eventual slight deformation of primary cell walls (depending on the species and root developmental stage), this method allows effective observation of different structures such as ontogenetic changes of cells along the root axis, e.g. development of xylem elements, deposition of Casparian bands and suberin lamellae in endodermis or exodermis or peri-endodermal thickenings in Noccaea roots. CONCLUSIONS: This method provides good-quality sections and allows relatively rapid detection of cell-wall modifications. Also important is the possibility of using this method for free-hand cutting of extremely thin roots such as those of Arabidopsis.


Assuntos
Parede Celular/ultraestrutura , Microscopia de Fluorescência/métodos , Microtomia/métodos , Raízes de Plantas/citologia , Coloração e Rotulagem/métodos , Arabidopsis/citologia , Brassica napus/citologia , Corantes Fluorescentes , Cebolas/citologia , Manejo de Espécimes , Triticum/citologia , Zea mays/citologia
18.
Pigment Cell Melanoma Res ; 25(2): 213-8, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22145991

RESUMO

The E3 ligase Rad18 is a key regulator for the lesion bypass pathway, which plays an important role in genomic stability. However, the status of Rad18 expression in melanoma is not known. Using melanoma tissue microarray (TMA), we showed that nuclear Rad18 expression was upregulated in primary and metastatic melanoma compared to dysplastic nevi. Rad18 expression was significantly reduced in sun-exposed sites compared to the sun-protected sites. Strong Rad18 expression correlated with worse 5-year patient survival and was an independent prognostic factor for melanoma found in the sun-protected sites. Furthermore, we showed that melanoma cell proliferation and the expression of pAkt and cyclin D1 were reduced upon Rad18 knockdown. We, for the first time, showed that Rad18 is significantly increased in melanoma and predicts the poor outcome for melanoma in the sun-protected sites. Rad18 is involved in the regulation of melanoma cell proliferation, which can be exploited in designing new strategy for melanoma treatment.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Melanoma/metabolismo , Melanoma/patologia , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Ciclina D1 , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Modelos de Riscos Proporcionais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Análise de Sobrevida , Ubiquitina-Proteína Ligases
19.
J Exp Bot ; 62(1): 21-37, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20855455

RESUMO

This article reviews the responses of plant roots to elevated rhizosphere cadmium (Cd) concentrations. Cadmium enters plants from the soil solution. It traverses the root through symplasmic or apoplasmic pathways before entering the xylem and being translocated to the shoot. Leaf Cd concentrations in excess of 5-10 µg g(-1) dry matter are toxic to most plants, and plants have evolved mechanisms to limit Cd translocation to the shoot. Cadmium movement through the root symplasm is thought to be restricted by the production of phytochelatins and the sequestration of Cd-chelates in vacuoles. Apoplasmic movement of Cd to the xylem can be restricted by the development of the exodermis, endodermis, and other extracellular barriers. Increasing rhizosphere Cd concentrations increase Cd accumulation in the plant, especially in the root. The presence of Cd in the rhizosphere inhibits root elongation and influences root anatomy. Cadmium concentrations are greater in the root apoplasm than in the root symplasm, and tissue Cd concentrations decrease from peripheral to inner root tissues. This article reviews current knowledge of the proteins involved in the transport of Cd across root cell membranes and its detoxification through sequestration in root vacuoles. It describes the development of apoplastic barriers to Cd movement to the xylem and highlights recent experiments indicating that their maturation is accelerated by high Cd concentrations in their immediate locality. It concludes that accelerated maturation of the endodermis in response to local Cd availability is of functional significance in protecting the shoot from excessive Cd loads.


Assuntos
Cádmio/metabolismo , Raízes de Plantas/metabolismo , Rizosfera , Transporte Biológico , Desenvolvimento Vegetal , Raízes de Plantas/crescimento & desenvolvimento , Plantas/metabolismo
20.
Ann Bot ; 107(2): 285-92, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21118841

RESUMO

BACKGROUND AND AIMS: Merwilla plumbea is an important African medicinal plant. As the plants grow in soils contaminated with metals from mining activities, the danger of human intoxication exists. An experiment with plants exposed to cadmium (Cd) was performed to investigate the response of M. plumbea to this heavy metal, its uptake and translocation to plant organs and reaction of root tissues. METHODS: Plants grown from seeds were cultivated in controlled conditions. Hydroponic cultivation is not suitable for this species as roots do not tolerate aquatic conditions, and additional stress by Cd treatment results in total root growth inhibition and death. After cultivation in perlite the plants exposed to 1 and 5 mg Cd L(-1) in half-strength Hoagland's solution were compared with control plants. Growth parameters were evaluated, Cd content was determined by inductively coupled plasma mass spectroscopy (ICP-MS) and root structure was investigated using various staining procedures, including the fluorescent stain Fluorol yellow 088 to detect suberin deposition in cell walls. KEY RESULTS: The plants exposed to Cd were significantly reduced in growth. Most of the Cd taken up by plants after 4 weeks cultivation was retained in roots, and only a small amount was translocated to bulbs and leaves. In reaction to higher Cd concentrations, roots developed a hypodermal periderm close to the root tip. Cells produced by cork cambium impregnate their cell walls by suberin. CONCLUSIONS: It is suggested that the hypodermal periderm is developed in young root parts in reaction to Cd toxicity to protect the root from radial uptake of Cd ions. Secondary meristems are usually not present in monocotyledonous species. Another interpretation explaining formation of protective suberized layers as a result of periclinal divisions of the hypodermis is discussed. This process may represent an as yet unknown defence reaction of roots when exposed to elemental stress.


Assuntos
Cádmio/toxicidade , Liliaceae/anatomia & histologia , Liliaceae/crescimento & desenvolvimento , Raízes de Plantas/anatomia & histologia , Cádmio/análise , Liliaceae/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Plantas Medicinais/anatomia & histologia , Plantas Medicinais/efeitos dos fármacos , Plantas Medicinais/crescimento & desenvolvimento , Poluentes do Solo/análise , Poluentes do Solo/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...