Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 21624, 2023 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-38062122

RESUMO

Dopaminergic degeneration is a central feature of Parkinson's disease (PD), but glial dysfunction may accelerate or trigger neuronal death. In fact, astrocytes play a key role in the maintenance of the blood-brain barrier and detoxification. 6-hydroxydopamine (6OHDA) is used to induce PD in rodent models due to its specific toxicity to dopaminergic neurons, but its effect on astrocytes has been poorly investigated. Here, we show that 6OHDA dose-dependently impairs autophagy in human U373 cells and primary murine astrocytes in the absence of cell death. LC3II downregulation was observed 6 to 48 h after treatment. Interestingly, 6OHDA enhanced NRH:quinone oxidoreductase 2 (NQO2) expression and activity in U373 cells, even if 6OHDA turned out not to be its substrate. Autophagic flux was restored by inhibition of NQO2 with S29434, which correlated with a partial reduction in oxidative stress in response to 6OHDA in human and murine astrocytes. NQO2 inhibition also increased the neuroprotective capability of U373 cells, since S29434 protected dopaminergic SHSY5Y cells from 6OHDA-induced cell death when cocultured with astrocytes. The toxic effects of 6OHDA on autophagy were attenuated by silencing NQO2 in human cells and primary astrocytes from NQO2-/- mice. Finally, the analysis of Gene Expression Omnibus datasets showed elevated NQO2 gene expression in the blood cells of early-stage PD patients. These data support a toxifying function of NQO2 in dopaminergic degeneration via negative regulation of autophagy and neuroprotection in astrocytes, suggesting a potential pharmacological target in PD.


Assuntos
Doença de Parkinson , Quinona Redutases , Humanos , Camundongos , Animais , Oxidopamina/farmacologia , Neuroproteção , Astrócitos/metabolismo , Doença de Parkinson/genética , Quinona Redutases/metabolismo , Autofagia , Neurônios Dopaminérgicos/metabolismo
2.
Antioxidants (Basel) ; 10(5)2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-34068281

RESUMO

Dietary flavonoids stimulate autophagy and prevent liver dysfunction, but the upstream signaling pathways triggered by these compounds are not well understood. Certain polyphenols bind directly to NRH-quinone oxidoreductase 2 (NQO2) and inhibit its activity. NQO2 is highly expressed in the liver, where it participates in quinone metabolism, but recent evidence indicates that it may also play a role in the regulation of oxidative stress and autophagy. Here, we addressed a potential role of NQO2 in autophagy induction by flavonoids. The pro-autophagic activity of seven flavonoid aglycons correlated perfectly with their ability to inhibit NQO2 activity, and flavones such as apigenin and luteolin showed the strongest activity in all assays. The silencing of NQO2 strongly reduced flavone-induced autophagic flux, although it increased basal LC3-II levels in HepG2 cells. Both flavones induced AMP kinase (AMPK) activation, while its reduction by AMPK beta (PRKAB1) silencing inhibited flavone-induced autophagy. Interestingly, the depletion of NQO2 levels by siRNA increased the basal AMPK phosphorylation but abrogated its further increase by apigenin. Thus, NQO2 contributes to the negative regulation of AMPK activity and autophagy, while its targeting by flavones releases pro-autophagic signals. These findings imply that NQO2 works as a flavone receptor mediating autophagy and may contribute to other hepatic effects of flavonoids.

3.
Data Brief ; 19: 1327-1334, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30229008

RESUMO

Bergamot Polyphenol Fraction (BPF®) is a natural mixture of Citrus flavonoids extracted from processed bergamot fruits. It has been shown to counteract cardiovascular risk factors and to prevent liver steatosis in rats and patients. Hepatic effects of BPF correlate with its ability to stimulate liver autophagy. Six aglyconic flavonoids have been identified in the proautophagic fraction of the hydrolysis product of BPF (A-BPF): naringenin, hesperetin, eridictyol, diosmetin, apigenin and luteolin. We report here the output parameters of high resolution mass spectrometry analysis of these flavonoids and chemical structures of their parent compounds. The second set of data shows the proautophagic activity of BPF flavonoids in a hepatic cell line HepG2 analyzed by a flow cytometry approach. The method is based on the red to green fluorescence intensity ratio analysis of DsRed -LC3- GFP, which is stably expressed in HepG2 cells. Proportional analysis of ATG indexes allowed us to address a relative contribution of individual compounds to the proautophagic activity of the A-BPF mixture and evaluate if the effect was additive. Qualitative analysis of ATG indexes compared the effects of flavonoids at equal concentrations in the presence and absence of palmitic acid and chloroquine. The Excel files reporting the analysis of flow cytometry data are available in the public repository.

4.
J Nutr Biochem ; 58: 119-130, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29890411

RESUMO

Autophagy dysfunction has been implicated in the pathogenesis of nonalcoholic fatty liver disease (NAFLD). Natural compounds present in bergamot polyphenol fraction (BPF) prevent NAFLD and induce autophagy in rat livers. Here, we employed HepG2 cells expressing DsRed-LC3-GFP, a highly sensitive model system to screen for proautophagic compounds present in BPF. BPF induced autophagy in a time- and dose-dependent fashion and the effect was amplified in cells loaded with palmitic acid. Autophagy was mediated by the hydrophobic fraction of acid-hydrolyzed BPF (A-BPF), containing six flavanone and flavone aglycones as identified by liquid chromatography-high-resolution mass spectrometry. Among them, naringenin, hesperitin, eriodictyol and diosmetin were weak inducers of autophagy. Apigenin showed the strongest and dose-dependent proautophagic activity at early time points (6 h). Luteolin induced a biphasic autophagic response, strong at low doses and inhibitory at higher doses. Both flavones were toxic in HepG2 cells and in differentiated human liver progenitors HepaRG upon longer treatments (24 h). In contrast, BPF and A-BPF did not show any toxicity, but induced a persistent increase in autophagic flux. A mixture of six synthetic aglycones mimicking A-BPF was sufficient to induce a similar autophagic response, but it was mildly cytotoxic. Thus, while six main BPF flavonoids fully account for its proautophagic activity, their combined effect is not sufficient to abrogate cytotoxicity of individual compounds. This suggests that a natural polyphenol phytocomplex, such as BPF, is a safer and more effective strategy for the treatment of NAFLD than the use of pure flavonoids.


Assuntos
Autofagia/efeitos dos fármacos , Citrus/química , Flavonoides/farmacologia , Fígado/efeitos dos fármacos , Polifenóis/farmacologia , Apigenina/farmacologia , Linhagem Celular , Relação Dose-Resposta a Droga , Flavonoides/química , Células Hep G2 , Humanos , Hidrólise , Fígado/citologia , Luteolina/farmacologia , Hepatopatia Gordurosa não Alcoólica/patologia , Polifenóis/química , Testes de Toxicidade
5.
Br J Pharmacol ; 175(16): 3298-3314, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29570770

RESUMO

BACKGROUND AND PURPOSE: Microglial phenotype and phagocytic activity are deregulated in Parkinson's disease (PD). PPARγ agonists are neuroprotective in experimental PD, but their role in regulating microglial phenotype and phagocytosis has been poorly investigated. We addressed it by using the PPARγ agonist MDG548. EXPERIMENTAL APPROACH: Murine microglial cell line MMGT12 was stimulated with LPS and/or MDG548, and their effect on phagocytosis of fluorescent microspheres or necrotic neurons was investigated by flow cytometry. Cytokines and markers of microglia phenotype, such as mannose receptor C type 1; MRC1), Ym1 and CD68 were measured by elisa and fluorescent immunohistochemistry. Levels of Beclin-1, which plays a role in microglial phagocytosis, were measured by Western blotting. In the in vivo MPTP-probenecid (MPTPp) model of PD in mice, MDG548 was tested on motor impairment, nigral neurodegeneration, microglial activation and phenotype. KEY RESULTS: In LPS-stimulated microglia, MDG548 increased phagocytosis of both latex beads and necrotic cells, up-regulated the expression of MRC1, CD68 and to a lesser extent IL-10, while blocking the LPS-induced increase of TNF-α and iNOS. MDG548 also induced Beclin-1. Chronic MPTPp treatment in mice down-regulated MRC1 and TGF-ß and up-regulated TNF-α and IL-1ß immunoreactivity in activated CD11b-positive microglia, causing the death of nigral dopaminergic neurons. MDG548 arrested MPTPp-induced cell death, enhanced MRC1 and restored cytokine levels. CONCLUSIONS AND IMPLICATIONS: This study adds a novel mechanism for PPARγ-mediated neuroprotection in PD and suggests that increasing phagocytic activity and anti-inflammatory markers may represent an effective disease-modifying approach.


Assuntos
Microglia/efeitos dos fármacos , Neuroproteção/fisiologia , PPAR gama/agonistas , Transtornos Parkinsonianos/metabolismo , Fagocitose/efeitos dos fármacos , Tiobarbitúricos/farmacologia , Animais , Linhagem Celular , Citocinas/metabolismo , Modelos Animais de Doenças , Humanos , Lipopolissacarídeos/farmacologia , Masculino , Camundongos Endogâmicos C57BL , Microglia/fisiologia , Microesferas , PPAR gama/metabolismo , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...