Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Med Phys ; 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38772134

RESUMO

BACKGROUND: The extremely fast delivery of doses with ultra high dose rate (UHDR) beams necessitates the investigation of novel approaches for real-time dosimetry and beam monitoring. This aspect is fundamental in the perspective of the clinical application of FLASH radiotherapy (FLASH-RT), as conventional dosimeters tend to saturate at such extreme dose rates. PURPOSE: This study aims to experimentally characterize newly developed silicon carbide (SiC) detectors of various active volumes at UHDRs and systematically assesses their response to establish their suitability for dosimetry in FLASH-RT. METHODS: SiC PiN junction detectors, recently realized and provided by STLab company, with different active areas (ranging from 4.5 to 10 mm2) and thicknesses (10-20 µm), were irradiated using 9 MeV UHDR pulsed electron beams accelerated by the ElectronFLASH linac at the Centro Pisano for FLASH Radiotherapy (CPFR). The linearity of the SiC response as a function of the delivered dose per pulse (DPP), which in turn corresponds to a specific instantaneous dose rate, was studied under various experimental conditions by measuring the produced charge within the SiC active layer with an electrometer. Due to the extremely high peak currents, an external customized electronic RC circuit was built and used in conjunction with the electrometer to avoid saturation. RESULTS: The study revealed a linear response for the different SiC detectors employed up to 21 Gy/pulse for SiC detectors with 4.5 mm2/10 µm active area and thickness. These values correspond to a maximum instantaneous dose rate of 5.5 MGy/s and are indicative of the maximum achievable monitored DPP and instantaneous dose rate of the linac used during the measurements. CONCLUSIONS: The results clearly demonstrate that the developed devices exhibit a dose-rate independent response even under extreme instantaneous dose rates and dose per pulse values. A systematic study of the SiC response was also performed as a function of the applied voltage bias, demonstrating the reliability of these dosimeters with UHDR also without any applied voltage. This demonstrates the great potential of SiC detectors for accurate dosimetry in the context of FLASH-RT.

2.
Front Oncol ; 14: 1373453, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38655137

RESUMO

FLASH-radiotherapy delivers a radiation beam a thousand times faster compared to conventional radiotherapy, reducing radiation damage in healthy tissues with an equivalent tumor response. Although not completely understood, this radiobiological phenomenon has been proved in several animal models with a spectrum of all kinds of particles currently used in contemporary radiotherapy, especially electrons. However, all the research teams have performed FLASH preclinical studies using industrial linear accelerator or LINAC commonly employed in conventional radiotherapy and modified for the delivery of ultra-high-dose-rate (UHDRs). Unfortunately, the delivering and measuring of UHDR beams have been proved not to be completely reliable with such devices. Concerns arise regarding the accuracy of beam monitoring and dosimetry systems. Additionally, this LINAC totally lacks an integrated and dedicated Treatment Planning System (TPS) able to evaluate the internal dose distribution in the case of in vivo experiments. Finally, these devices cannot modify dose-time parameters of the beam relevant to the flash effect, such as average dose rate; dose per pulse; and instantaneous dose rate. This aspect also precludes the exploration of the quantitative relationship with biological phenomena. The dependence on these parameters need to be further investigated. A promising advancement is represented by a new generation of electron LINAC that has successfully overcome some of these technological challenges. In this review, we aim to provide a comprehensive summary of the existing literature on in vivo experiments using electron FLASH radiotherapy and explore the promising clinical perspectives associated with this technology.

3.
Radiol Med ; 129(2): 307-314, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38315280

RESUMO

PURPOSE: To describe a Delphi consensus for the realization of a structured radiology request form for patients undergoing musculoskeletal imaging. METHODS: A steering committee (four radiologists, a rheumatologist and an orthopedic surgeon) proposed a form to an expert panel (30 members, ten radiologists, ten rheumatologists and ten orthopedic surgeons). Through an online survey, the panelists voted on their level of agreement with the statements of the form using a 10-point Likert scale (1: no agreement; 10: total agreement) in a three-round process. A combination of two distinct criteria, a mean agreement level ≥ 8 and a percentage of at least 75% of responses with a value ≥ 8, was deemed as acceptable. RESULTS: The form achieved high median ratings in all the assessed key features. During the first round, all items met the threshold to be advanced as unmodified in the next round. Additional proposed items were considered and introduced in the next round (six items in Section 1, five items in Section 2, ten items in Section 3, 11 items in Section 4, six items in Section 5, eight items in Section 6, ten items in Section 7 and eight items in Section 8). Of these items, in round 3, only six reached the threshold to be integrated into the final form. CONCLUSIONS: Implementation of a structured radiology request form can improve appropriateness and collaboration between clinicians and radiologists in musculoskeletal imaging.


Assuntos
Reumatologia , Traumatologia , Humanos , Radiologia Intervencionista , Técnica Delphi , Itália
4.
Artif Cells Nanomed Biotechnol ; 52(1): 122-129, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38315518

RESUMO

Locally advanced head and neck squamous cell carcinoma (LA-HNSCC) is characterized by high rate of recurrence, resulting in a poor survival. Standard treatments are associated with significant toxicities that impact the patient's quality of life, highlighting the urgent need for novel therapies to improve patient outcomes. On this regard, noble metal nanoparticles (NPs) are emerging as promising agents as both drug carriers and radiosensitizers. On the other hand, co-treatments based on NPs are still at the preclinical stage because of the associated metal-persistence.In this bioconvergence study, we introduce a novel strategy to exploit tumour chorioallantoic membrane models (CAMs) in radio-investigations within clinical equipment and evaluate the performance of non-persistent nanoarchitectures (NAs) in combination with radiotherapy with respect to the standard concurrent chemoradiotherapy for the treatment of HPV-negative HNSCCs. A comparable effect has been observed between the tested approaches, suggesting NAs as a potential platinum-free agent in concurrent chemoradiotherapy for HNSCCs. On a broader basis, our bioconvergence approach provides an advance for the translation of Pt-free radiosensitizer to the clinical practice, positively shifting the therapeutic vs. side effects equilibrium for the management of HNSCCs.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Infecções por Papillomavirus , Radiossensibilizantes , Humanos , Carcinoma de Células Escamosas/patologia , Platina/farmacologia , Platina/uso terapêutico , Qualidade de Vida , Infecções por Papillomavirus/terapia , Cisplatino/uso terapêutico , Neoplasias de Cabeça e Pescoço/induzido quimicamente , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço/induzido quimicamente , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Radiossensibilizantes/farmacologia , Quimiorradioterapia/efeitos adversos , Quimiorradioterapia/métodos
5.
Front Oncol ; 13: 1254601, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37936603

RESUMO

Radiotherapy (RT) is performed in approximately 75% of patients with cancer, and its efficacy is often hampered by the low tolerance of the surrounding normal tissues. Recent advancements have demonstrated the potential to widen the therapeutic window using "very short" radiation treatment delivery (from a conventional dose rate between 0.5 Gy/min and 2 Gy/min to more than 40 Gy/s) causing a significant increase of normal tissue tolerance without varying the tumor effect. This phenomenon is called "FLASH Effect (FE)" and has been discovered by using electrons. Although several physical, dosimetric, and radiobiological aspects need to be clarified, current preclinical "in vivo" studies have reported a significant protective effect of FLASH RT on neurocognitive function, skin toxicity, lung fibrosis, and bowel injury. Therefore, the current radiobiological premises lay the foundation for groundbreaking potentials in clinical translation, which could be addressed to an initial application of Low Energy Electron FLASH (LEE) for the treatment of superficial tumors to a subsequent Very High Energy Electron FLASH (VHEE) for the treatment of deep tumors. Herein, we report a clinical investigational scenario that, if supported by preclinical studies, could be drawn in the near future.

6.
Phys Med Biol ; 68(17)2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37494946

RESUMO

Objective.A reliable determination of the instantaneous dose rate (I-DR) delivered in FLASH radiotherapy treatments is believed to be crucial to assess the so-called FLASH effect in preclinical and biological studies. At present, no detectors nor real-time procedures are available to do that in ultra high dose rate (UH-DR) electron beams, typically consisting ofµs pulses characterized by I-DRs of the order of MGy/s. A dosimetric system is proposed possibly overcoming the above reported limitation, based on the recently developed flashDiamond (fD) detector (model 60025, PTW-Freiburg, Germany).Approach.A dosimetric system is proposed, based on a flashDiamond detector prototype, properly modified and adapted for very fast signal transmission. It was used in combination with a fast transimpedance amplifier and a digital oscilloscope to record the temporal traces of the pulses delivered by an ElectronFlash linac (SIT S.p.A., Italy). The proposed dosimetric systems was investigated in terms of the temporal characteristics of its response and the capability to measure the absolute delivered dose and instantaneous dose rate (I-DR). A 'standard' flashDiamond was also investigated and its response compared with the one of the specifically designed prototype.Main results. Temporal traces recorded in several UH-DR irradiation conditions showed very good signal to noise ratios and rise and decay times of the order of a few tens ns, faster than the ones obtained by the current transformer embedded in the linac head. By analyzing such signals, a calibration coefficient was derived for the fD prototype and found to be in agreement within 1% with the one obtained under reference60Co irradiation. I-DRs as high as about 2 MGy s-1were detected without any undesired saturation effect. Absolute dose per pulse values extracted by integrating the I-DR signals were found to be linear up to at least 7.13 Gy and in very good agreement with the ones obtained by connecting the fD to a UNIDOS electrometer (PTW-Freiburg, Germany). A good short term reproducibility of the linac output was observed, characterized by a pulse-to-pulse variation coefficient of 0.9%. Negligible differences were observed when replacing the fD prototype with a standard one, with the only exception of a somewhat slower response time for the latter detector type.Significance.The proposed fD-based system was demonstrated to be a suitable tool for a thorough characterization of UH-DR beams, providing accurate and reliable time resolved I-DR measurements from which absolute dose values can be straightforwardly derived.


Assuntos
Diamante , Elétrons , Reprodutibilidade dos Testes , Radiometria/métodos , Calibragem
7.
Phys Med ; 103: 175-180, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36370686

RESUMO

The free electron fraction is the fraction of electrons, produced inside the cavity of an ionization chamber after irradiation, which does not bind to gas molecules and thereby reaches the electrode as free electrons. It is a fundamental quantity to describe the recombination processes of an ionization chamber, as it generates a gap of positive charges compared to negative ones, which certainly will not undergo recombination. The free electron fraction depends on the specific chamber geometry, the polarizing applied voltage and the gas thermodynamic properties. Therefore, it is necessary to evaluate such fraction in an accurate and easy way for any measurement condition. In this paper, a simple and direct method for evaluating the free electron fraction of ionization chambers is proposed. We first model the capture process of the electrons produced inside an ionization chamber after the beam pulse; then we present a method to evaluate the free electron fraction based on simple measurements of collected charge, by varying the applied voltage. Finally, the results obtained using an Advanced Markus chamber irradiated with a Flash Radiotherapy dedicated research Linac (ElectronFlash) to estimate the free electron fraction are presented. The proposed method allows the use of a conventional ionization chamber for measurements in ultra-high-dose-per-pulse (UHDP) conditions, up to values of dose-per-pulse at which the perturbation of the electric field due to the generated charge can be considered negligible.


Assuntos
Elétrons , Radiometria , Radiometria/métodos , Aceleradores de Partículas
8.
Nat Commun ; 13(1): 4975, 2022 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-36008376

RESUMO

More than 70% of human breast cancers (BCs) are estrogen receptor α-positive (ER+). A clinical challenge of ER+ BC is that they can recur decades after initial treatments. Mechanisms governing latent disease remain elusive due to lack of adequate in vivo models. We compare intraductal xenografts of ER+ and triple-negative (TN) BC cells and demonstrate that disseminated TNBC cells proliferate similarly as TNBC cells at the primary site whereas disseminated ER+ BC cells proliferate slower, they decrease CDH1 and increase ZEB1,2 expressions, and exhibit characteristics of epithelial-mesenchymal plasticity (EMP) and dormancy. Forced E-cadherin expression overcomes ER+ BC dormancy. Cytokine signalings are enriched in more active versus inactive disseminated tumour cells, suggesting microenvironmental triggers for awakening. We conclude that intraductal xenografts model ER + BC dormancy and reveal that EMP is essential for the generation of a dormant cell state and that targeting exit from EMP has therapeutic potential.


Assuntos
Neoplasias da Mama , Neoplasias de Mama Triplo Negativas , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal/genética , Feminino , Humanos , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia
9.
Phys Med ; 102: 9-18, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36030665

RESUMO

Ultra-High dose-per-pulse regimens (UHDP), necessary to trigger the "FLASH" effect, still pose serious challenges to dosimetry. Dosimetry plays a crucial role, both to significantly improve the accuracy of the radiobiological experiments necessary to fully understand the mechanisms underlying the effect and its dependencies on the beam parameters, and to be able to translate such effect into clinical practice. The standard ionization chamber in UHDP region is significantly affected by the effects of the electric field generated by the enormous density of charges produced by the dose pulse. This work describes the theory and the conceptual design of a gas chamber (the ALLS chamber) which overcomes the above-mentioned problems.


Assuntos
Doses de Radiação , Radiometria
10.
Nat Commun ; 13(1): 3127, 2022 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-35668111

RESUMO

Estrogen and progesterone receptor (ER, PR) signaling control breast development and impinge on breast carcinogenesis. ER is an established driver of ER + disease but the role of the PR, itself an ER target gene, is debated. We assess the issue in clinically relevant settings by a genetic approach and inject ER + breast cancer cell lines and patient-derived tumor cells to the milk ducts of immunocompromised mice. Such ER + xenografts were exposed to physiologically relevant levels of 17-ß-estradiol (E2) and progesterone (P4). We find that independently both premenopausal E2 and P4 levels increase tumor growth and combined treatment enhances metastatic spread. The proliferative responses are patient-specific with MYC and androgen receptor (AR) signatures determining P4 response. PR is required for tumor growth in patient samples and sufficient to drive tumor growth and metastasis in ER signaling ablated tumor cells. Our findings suggest that endocrine therapy may need to be personalized, and that abrogating PR expression can be a therapeutic option.


Assuntos
Neoplasias da Mama , Receptores de Progesterona , Animais , Neoplasias da Mama/metabolismo , Estradiol/farmacologia , Estradiol/uso terapêutico , Feminino , Humanos , Camundongos , Progesterona/farmacologia , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismo
11.
EMBO Mol Med ; 13(7): e14314, 2021 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-34042278

RESUMO

Hormonal contraception exposes women to synthetic progesterone receptor (PR) agonists, progestins, and transiently increases breast cancer risk. How progesterone and progestins affect the breast epithelium is poorly understood because we lack adequate models to study this. We hypothesized that individual progestins differentially affect breast epithelial cell proliferation and hence breast cancer risk. Using mouse mammary tissue ex vivo, we show that testosterone-related progestins induce the PR target and mediator of PR signaling-induced cell proliferation receptor activator of NF-κB ligand (Rankl), whereas progestins with anti-androgenic properties in reporter assays do not. We develop intraductal xenografts of human breast epithelial cells from 36 women, show they remain hormone-responsive and that progesterone and the androgenic progestins, desogestrel, gestodene, and levonorgestrel, promote proliferation but the anti-androgenic, chlormadinone, and cyproterone acetate, do not. Prolonged exposure to androgenic progestins elicits hyperproliferation with cytologic changes. Androgen receptor inhibition interferes with PR agonist- and levonorgestrel-induced RANKL expression and reduces levonorgestrel-driven cell proliferation. Thus, different progestins have distinct biological activities in the breast epithelium to be considered for more informed choices in hormonal contraception.


Assuntos
Androgênios , Progestinas , Animais , Proliferação de Células , Anticoncepcionais , Camundongos
12.
J Mammary Gland Biol Neoplasia ; 26(2): 101-112, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33999331

RESUMO

Patient-Derived Xenografts (PDXs) are the preclinical models which best recapitulate inter- and intra-patient complexity of human breast malignancies, and are also emerging as useful tools to study the normal breast epithelium. However, data analysis generated with such models is often confounded by the presence of host cells and can give rise to data misinterpretation. For instance, it is important to discriminate between xenografted and host cells in histological sections prior to performing immunostainings. We developed Single Cell Classifier (SCC), a data-driven deep learning-based computational tool that provides an innovative approach for automated cell species discrimination based on a multi-step process entailing nuclei segmentation and single cell classification. We show that human and murine cell contextual features, more than cell-intrinsic ones, can be exploited to discriminate between cell species in both normal and malignant tissues, yielding up to 96% classification accuracy. SCC will facilitate the interpretation of H&E- and DAPI-stained histological sections of xenografted human-in-mouse tissues and it is open to new in-house built models for further applications. SCC is released as an open-source plugin in ImageJ/Fiji available at the following link: https://github.com/Biomedical-Imaging-Group/SingleCellClassifier .


Assuntos
Neoplasias da Mama/patologia , Xenoenxertos/patologia , Processamento de Imagem Assistida por Computador/métodos , Animais , Aprendizado Profundo , Feminino , Humanos , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto
13.
EMBO Mol Med ; 13(3): e13180, 2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33616307

RESUMO

Invasive lobular carcinoma (ILC) is the most frequent special histological subtype of breast cancer, typically characterized by loss of E-cadherin. It has clinical features distinct from other estrogen receptor-positive (ER+ ) breast cancers but the molecular mechanisms underlying its characteristic biology are poorly understood because we lack experimental models to study them. Here, we recapitulate the human disease, including its metastatic pattern, by grafting ILC-derived breast cancer cell lines, SUM-44 PE and MDA-MB-134-VI cells, into the mouse milk ducts. Using patient-derived intraductal xenografts from lobular and non-lobular ER+ HER2- tumors to compare global gene expression, we identify extracellular matrix modulation as a lobular carcinoma cell-intrinsic trait. Analysis of TCGA patient datasets shows matrisome signature is enriched in lobular carcinomas with overexpression of elastin, collagens, and the collagen modifying enzyme LOXL1. Treatment with the pan LOX inhibitor BAPN and silencing of LOXL1 expression decrease tumor growth, invasion, and metastasis by disrupting ECM structure resulting in decreased ER signaling. We conclude that LOXL1 inhibition is a promising therapeutic strategy for ILC.


Assuntos
Neoplasias da Mama , Carcinoma Lobular , Aminoácido Oxirredutases/genética , Animais , Carcinoma Lobular/genética , Matriz Extracelular , Feminino , Xenoenxertos , Humanos , Camundongos , Receptores de Estrogênio
14.
Strahlenther Onkol ; 197(3): 209-218, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33034672

RESUMO

PURPOSE: To develop a videofluoroscopy-based predictive model of radiation-induced dysphagia (RID) by incorporating DVH parameters of swallowing organs at risk (SWOARs) in a machine learning analysis. METHODS: Videofluoroscopy (VF) was performed to assess the penetration-aspiration score (P/A) at baseline and at 6 and 12 months after RT. An RID predictive model was developed using dose to nine SWOARs and P/A-VF data at 6 and 12 months after treatment. A total of 72 dosimetric features for each patient were extracted from DVH and analyzed with linear support vector machine classification (SVC), logistic regression classification (LRC), and random forest classification (RFC). RESULTS: 38 patients were evaluable. The relevance of SWOARs DVH features emerged both at 6 months (AUC 0.82 with SVC; 0.80 with LRC; and 0.83 with RFC) and at 12 months (AUC 0.85 with SVC; 0.82 with LRC; and 0.94 with RFC). The SWOARs and the corresponding features with the highest relevance at 6 months resulted as the base of tongue (V65 and Dmean), the superior (Dmean) and medium constrictor muscle (V45, V55; V65; Dmp; Dmean; Dmax and Dmin), and the parotid glands (Dmean and Dmp). On the contrary, the features with the highest relevance at 12 months were the medium (V55; Dmin and Dmean) and inferior constrictor muscles (V55, V65 Dmin and Dmax), the glottis (V55 and Dmax), the cricopharyngeal muscle (Dmax), and the cervical esophagus (Dmax). CONCLUSION: We trained and cross-validated an RID predictive model with high discriminative ability at both 6 and 12 months after RT. We expect to improve the predictive power of this model by enlarging the number of training datasets.


Assuntos
Transtornos de Deglutição/etiologia , Neoplasias de Cabeça e Pescoço/radioterapia , Radioterapia de Intensidade Modulada/efeitos adversos , Fluoroscopia/métodos , Humanos , Aprendizado de Máquina , Modelos Biológicos , Órgãos em Risco , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Fatores de Risco
15.
Sci Rep ; 10(1): 17307, 2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-33057078

RESUMO

Radiotherapy with very high energy electrons has been investigated for a couple of decades as an effective approach to improve dose distribution compared to conventional photon-based radiotherapy, with the recent intriguing potential of high dose-rate irradiation. Its practical application to treatment has been hindered by the lack of hospital-scale accelerators. High-gradient laser-plasma accelerators (LPA) have been proposed as a possible platform, but no experiments so far have explored the feasibility of a clinical use of this concept. We show the results of an experimental study aimed at assessing dose deposition for deep seated tumours using advanced irradiation schemes with an existing LPA source. Measurements show control of localized dose deposition and modulation, suitable to target a volume at depths in the range from 5 to 10 cm with mm resolution. The dose delivered to the target was up to 1.6 Gy, delivered with few hundreds of shots, limited by secondary components of the LPA accelerator. Measurements suggest that therapeutic doses within localized volumes can already be obtained with existing LPA technology, calling for dedicated pre-clinical studies.


Assuntos
Elétrons/uso terapêutico , Lasers , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada/instrumentação , Radioterapia de Intensidade Modulada/métodos , Estudos de Viabilidade , Humanos , Aceleradores de Partículas
16.
J Pharm Biomed Anal ; 175: 112756, 2019 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-31387028

RESUMO

In the context of hormonal contraception and hormone replacement therapy (HRT), many women are exposed to exogenous hormones. Current use of hormonal contraception with combined ethinyl estradiol and different progestins bestows a breast cancer relative risk (RR) of 1.2- while combined HRT has a RR of 2. Although these exposures present an important public health issue, little is known about the effects of individual progestins on the breast and other tissues. Increasing availability of large scale biobanks, high throughput analyses and data management tools enable ever expanding, sophisticated population studies. In order to address the impact of distinct progestins on various health indicators, it is desirable to accurately quantify progestins in clinical samples. Here we have developed and validated a high resolution liquid chromatography mass spectrometry (LC-MS) targeted method for the simultaneous quantification of 11 synthetic progestins widely used in oral contraceptives, gestodene, levonorgestrel, etonogestrel, chlormadinone acetate, cyproterone acetate, drospirenone, desacetyl norgestimate, medroxyprogesterone acetate, norethindrone, dienogest, nomegestrol acetate, and 4 endogenous steroid hormones, progesterone, testosterone, androstenedione, and cortisol in blood samples. This highly specific quantitative analysis with high resolution Orbitrap technology detects and quantifies 15 compounds using their internal standard counterparts in a single 12 min LC-MS run. Sensitivity is attained by the use of the instrument in targeted selected ion monitoring mode. Lower limit of quantitation ranges from 2.4 pg/ml for drospirenone to 78.1 pg/ml for chlormadinone acetate. The method provides comprehensive progestin panel measurements with as little as 50 µl of murine or human plasma.


Assuntos
Anticoncepcionais/química , Progestinas/química , Esteroides/química , Animais , Cromatografia Líquida/métodos , Feminino , Humanos , Camundongos , Camundongos Endogâmicos NOD , Espectrometria de Massas em Tandem/métodos
17.
PhytoKeys ; (103): 61-82, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30057477

RESUMO

Our understanding of the richness and uniqueness of the flora growing on gypsum substrates in Italy has grown significantly since the 19th century and, even today, new plant species are still being discovered. However, the plants and plant communities, growing on gypsum substrates in Italy, are still a relatively unknown subject. The main aim of this paper was to elaborate a checklist of the Italian gypsophilous flora, to increase knowledge about this peculiar flora and for which conservation efforts need to be addressed. Through a structured group communication process of experts (application of the Delphi technique), a remarkable number of experienced Italian botanists have joined together to select focal plant species linked to gypsum substrates. From the results obtained, 31 plant species behave as absolute or preferent taxa (gypsophytes and gypsoclines) and form the 'core' Italian gypsophilous flora. The most abundant life forms were chamaephytes and hemicryptophytes, belonging to Poaceae and Brassicaceae; as for chorotypes, the most represented are Mediterranean and narrow endemics. By improving on previously available information about the flora with a clear preference for gypsum in Italy, this undertaking represents an important contribution to the knowledge of a habitat which is today considered a priority for conservation.

18.
Radiol Med ; 123(11): 851-859, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29968070

RESUMO

AIMS AND OBJECTIVES: The aim of the current study is to present our experience in lumbar spine interventional procedures performed with a newly developed multimodal echo-navigator (EcoNav) and to evaluate short-term clinical outcomes of a series of patients affected by facet joint disease (FJD) treated with steroid and anaesthetic injection under fusion-imaging guidance, compared to a cohort of patients that received the same treatment under computed tomography (CT) guidance. METHODS: Sixty-five consecutive patients (34 females; mean age 68.3 ± 12.8 years) with a clinical diagnosis of non-radicular low back pain lasting for more than 6-weeks and magnetic resonance (MR) or CT confirmed FJD were enrolled for image-guided FJI. Twenty-eight patients underwent FJI with fusion-guided technique, while CT-guided procedures were performed in the other cases. Clinical and procedural data were recorded and compared at a mean follow-up of 6.1 ± 2.0 months. RESULTS: A significant improvement in clinical parameters was observed for both fusion-guided and CT-guided group. Comparing both groups, no statistically significant difference could be detected neither at baseline conditions nor during the follow-up period. No significant periprocedural complication occurred in both groups. A satisfaction rate of 92.3 and 81.1% was reported for fusion-guided and CT-guided group, respectively. CONCLUSION: EcoNav fusion-imaging system represents a safe, feasible, effective and reproducible guidance option in FJD infiltration procedures, also avoiding use of ionising radiations.


Assuntos
Injeções Espinhais/métodos , Dor Lombar/diagnóstico por imagem , Dor Lombar/tratamento farmacológico , Tomografia Computadorizada por Raios X , Articulação Zigapofisária/diagnóstico por imagem , Idoso , Feminino , Humanos , Masculino , Estudos Retrospectivos
19.
Q J Nucl Med Mol Imaging ; 62(1): 101-111, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26329496

RESUMO

BACKGROUND: Molecular subtypes of breast cancer have been proposed since 2012. The correlation between various baseline [18F]fluorodeoxyglucose ([18F]FDG) uptake parameters, including total lesion glycolysis (TLG), and molecular subtypes of primary breast cancer lesions in patients with invasive ductal cancer will be investigated. METHODS: Staging [18F]FDG PET/CT for breast invasive ductal carcinoma were retrospectively evaluated. Breast lesions were examined for estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2) and proliferation index (Ki-67). Breast tumors were classified into five molecular subtypes: Luminal A, Luminal B-HER2(-), Luminal B-HER2(+), HER2(+) and Basal or Triple Negative cancers. The correlations between tumor characteristics and PET semiquantitative data of primary breast lesion (SUVmean, SUVmax, Mean tumor volume (MTV), TLG) were assessed. Specific Breast Uptake Ratio (SBUR) is used as a new quantification method of breast uptake to correct for physiological background activity. RESULTS: Fifty-eight patients were included. TLG was significantly higher in triple negative group when compared with luminal A (P<0.01). Significantly higher uptake was found in triple negative lesions when compared with luminal B-HER2(-) and luminal B-HER2(+) categories using SUVmax, SUVmean and TLG (all P<0.05). Conversely, no statistically significant difference for [18F]FDG uptake was observed between all other molecular subtypes. No value of SBUR in terms of correlation with histopathological parameters was demonstrated. CONCLUSIONS: TLG was superior to SUVmax and SUVmean in differentiating between triple negative breast cancer lesions and all other molecular subtypes. SBUR was not different statistically between various molecular subtypes.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Carcinoma Ductal de Mama/diagnóstico por imagem , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias da Mama/patologia , Carcinoma Ductal de Mama/patologia , Feminino , Fluordesoxiglucose F18 , Humanos , Pessoa de Meia-Idade , Estudos Retrospectivos
20.
Oncotarget ; 8(8): 13476-13487, 2017 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-28086236

RESUMO

Glioblastoma multiforme (GBM) is characterized by a strong self-renewal potential and a poor differentiation state. Since receptor-like tyrosine kinase (RYK) activates the WNT/ß-catenin pathway essential for cancer stem cell maintenance, we evaluated its contribution in conferring stemness to GBM cells. Here, we report that Ryk (related-to-receptor tyrosine kinase), an atypical tyrosine kinase receptor, is upregulated in samples from GBM patients as well as in GSCs. Ryk overexpression confers stemness properties to GBM cells through the modulation of the canonical Wnt signaling and by promoting the activation of pluripotency-related transcription factor circuitry and neurosphere formation ability. In contrast, siRNA-mediated knockdown of Ryk expression suppresses this stem-like phenotype. Rescue experiments reveal that stemness-promoting activity of Ryk is attributable, at least in part, to ß-catenin stabilization. Furthermore, Ryk overexpression improves cell motility and anchorage independent cell growth. Taken together, our findings demonstrate that Ryk promotes stem cell-like and tumorigenic features to glioma cells its essential for the maintenance of GSCs and could be a target of novel therapies.


Assuntos
Neoplasias Encefálicas/patologia , Glioblastoma/patologia , Células-Tronco Neoplásicas/patologia , Receptores Proteína Tirosina Quinases/metabolismo , Via de Sinalização Wnt/fisiologia , Western Blotting , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Técnicas de Silenciamento de Genes , Glioblastoma/metabolismo , Humanos , Células-Tronco Neoplásicas/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...