Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-493569

RESUMO

Uneven worldwide vaccination coverage against SARS-CoV-2 and emergence of variants escaping immunity call for broadly-effective and easily-deployable therapeutics. We previously described the human single-chain scFv76 antibody, which recognizes SARS-CoV-2 Alfa, Beta, Gamma and Delta variants. We now show that scFv76 also neutralizes infectivity and fusogenic activity of Omicron BA.1 and BA.2 variants. Cryo-EM analysis reveals that scFv76 binds to a well-conserved SARS-CoV-2 spike epitope, providing the structural basis for its broad-spectrum activity. Moreover, we demonstrate that nebulized scFv76 exhibits therapeutic efficacy in a severe hACE2 transgenic mouse model of COVID-19 pneumonia, as shown by body weight and pulmonary viral load data. Counteraction of infection correlates with the inhibition of lung inflammation observed by histopathology and expression of inflammatory cytokines and chemokines. Biomarkers of pulmonary endothelial damage were also significantly reduced in scFv76-treated mice. Altogether the results support the use of nebulized scFv76 for COVID-19 induced by any SARS-CoV-2 variants emerged so far.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-452027

RESUMO

The vaccination campaign against SARS-CoV-2 relies on the world-wide availability of effective vaccines, with a potential need of 20 billion vaccine doses to fully vaccinate the world population. To reach this goal, the manufacturing and logistic processes should be affordable to all countries, irrespectively of economical and climatic conditions. Outer membrane vesicles (OMVs) are bacterial-derived vesicles that can be engineered to incorporate heterologous antigens. Given the inherent adjuvanticity, such modified OMVs can be used as vaccine to induce potent immune responses against the associated protein. Here we show that OMVs engineered to incorporate peptides derived from the receptor binding motif (RBM) of the spike protein from SARS-CoV-2 elicit an effective immune response in immunized mice, resulting in the production of neutralizing antibodies. The immunity induced by the vaccine is sufficient to protect K18-hACE2 transgenic mice from intranasal challenge with SARS-CoV-2, preventing both virus replication in the lungs and the pathology associated with virus infection. Furthermore, we show that OMVs can be effectively decorated with RBM peptides derived from a different genetic variant of SARS-CoV-2, inducing a similarly potent neutralization activity in vaccinated mice. Altogether, given the convenience associated with ease of engineering, production and distribution, our results demonstrate that OMV-based SARS-CoV-2 vaccines can be a crucial addition to the vaccines currently available.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...