Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
MicroPubl Biol ; 20242024.
Artigo em Inglês | MEDLINE | ID: mdl-38495589

RESUMO

Ras signaling plays a highly conserved role from flies to mammals in establishing proper development, and its dysregulation can lead to cancer. In Drosophila , we demonstrated that Ras Tyrosine 4 (Y4) was required for inhibitory ubiquitination by Rabex-5. In humans, rare histidine substitution mutations at Y4 are found in HRas in cerebellar glioblastomas (cGBMs). We report here that analogous Y4H mutations in Drosophila Ras make it less sensitive to Rabex-5-mediated ubiquitination in cells and show increased frequency of vein phenotypes per wing compared to wild-type Ras, which would be consistent with Ras gain-of-function and with their appearance in human cGBMs.

2.
PLoS Genet ; 16(6): e1008715, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32559233

RESUMO

Dysregulation of the Ras oncogene in development causes developmental disorders, "Rasopathies," whereas mutational activation or amplification of Ras in differentiated tissues causes cancer. Rabex-5 (also called RabGEF1) inhibits Ras by promoting Ras mono- and di-ubiquitination. We report here that Rabex-5-mediated Ras ubiquitination requires Ras Tyrosine 4 (Y4), a site of known phosphorylation. Ras substitution mutants insensitive to Y4 phosphorylation did not undergo Rabex-5-mediated ubiquitination in cells and exhibited Ras gain-of-function phenotypes in vivo. Ras Y4 phosphomimic substitution increased Rabex-5-mediated ubiquitination in cells. Y4 phosphomimic substitution in oncogenic Ras blocked the morphological phenotypes associated with oncogenic Ras in vivo dependent on the presence of Rabex-5. We developed polyclonal antibodies raised against an N-terminal Ras peptide phosphorylated at Y4. These anti-phospho-Y4 antibodies showed dramatic recognition of recombinant wild-type Ras and RasG12V proteins when incubated with JAK2 or SRC kinases but not of RasY4F or RasY4F,G12V recombinant proteins suggesting that JAK2 and SRC could promote phosphorylation of Ras proteins at Y4 in vitro. Anti-phospho-Y4 antibodies also showed recognition of RasG12V protein, but not wild-type Ras, when incubated with EGFR. A role for JAK2, SRC, and EGFR (kinases with well-known roles to activate signaling through Ras), to promote Ras Y4 phosphorylation could represent a feedback mechanism to limit Ras activation and thus establish Ras homeostasis. Notably, rare variants of Ras at Y4 have been found in cerebellar glioblastomas. Therefore, our work identifies a physiologically relevant Ras ubiquitination signal and highlights a requirement for Y4 for Ras inhibition by Rabex-5 to maintain Ras pathway homeostasis and to prevent tissue transformation.


Assuntos
Proteínas de Drosophila/metabolismo , Transdução de Sinais , Ubiquitina-Proteína Ligases/metabolismo , Proteínas ras/metabolismo , Animais , Células Cultivadas , Sequência Conservada , Drosophila , Receptores ErbB/metabolismo , Retroalimentação Fisiológica , Janus Quinase 2/metabolismo , Fosforilação , Tirosina/química , Tirosina/genética , Ubiquitinação , Proteínas ras/química , Proteínas ras/genética , Quinases da Família src/metabolismo
3.
PLoS Genet ; 14(1): e1007154, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29370168

RESUMO

Germline stem cell (GSC) self-renewal and differentiation into gametes is regulated by both intrinsic factors in the germ line as well as extrinsic factors from the surrounding somatic niche. dWnt4, in the escort cells of the adult somatic niche promotes GSC differentiation using the canonical ß-catenin-dependent transcriptional pathway to regulate escort cell survival, adhesion to the germ line and downregulation of self-renewal signaling. Here, we show that in addition to the ß-catenin-dependent canonical pathway, dWnt4 also uses downstream components of the Wnt non-canonical pathway to promote escort cell function earlier in development. We find that the downstream non-canonical components, RhoA, Rac1 and cdc42, are expressed at high levels and are active in escort cell precursors of the female larval gonad compared to the adult somatic niche. Consistent with this expression pattern, we find that the non-canonical pathway components function in the larval stages but not in adults to regulate GSC differentiation. In the larval gonad, dWnt4, RhoA, Rac1 and cdc42 are required to promote intermingling of escort cell precursors, a function that then promotes proper escort cell function in the adults. We find that dWnt4 acts by modulating the activity of RhoA, Rac1 and cdc42, but not their protein levels. Together, our results indicate that at different points of development, dWnt4 switches from using the non-canonical pathway components to using a ß-catenin-dependent canonical pathway in the escort cells to facilitate the proper differentiation of GSCs.


Assuntos
Diferenciação Celular/genética , Proteínas de Drosophila/fisiologia , Drosophila melanogaster , Células Germinativas/fisiologia , Glicoproteínas/fisiologia , Nicho de Células-Tronco , Células-Tronco/fisiologia , Proteínas Wnt/fisiologia , Via de Sinalização Wnt/genética , Animais , Animais Geneticamente Modificados , Proteínas de Drosophila/genética , Drosophila melanogaster/citologia , Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Embrião não Mamífero , Feminino , Genes de Troca/fisiologia , Glicoproteínas/genética , Gônadas/citologia , Gônadas/fisiologia , Masculino , Nicho de Células-Tronco/genética , Proteínas Wnt/genética
4.
PLoS Genet ; 12(3): e1005918, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27019121

RESUMO

Germline stem cell (GSC) self-renewal and differentiation are required for the sustained production of gametes. GSC differentiation in Drosophila oogenesis requires expression of the histone methyltransferase dSETDB1 by the somatic niche, however its function in this process is unknown. Here, we show that dSETDB1 is required for the expression of a Wnt ligand, Drosophila Wingless type mouse mammary virus integration site number 4 (dWnt4) in the somatic niche. dWnt4 signaling acts on the somatic niche cells to facilitate their encapsulation of the GSC daughter, which serves as a differentiation cue. dSETDB1 is known to repress transposable elements (TEs) to maintain genome integrity. Unexpectedly, we found that independent upregulation of TEs also downregulated dWnt4, leading to GSC differentiation defects. This suggests that dWnt4 expression is sensitive to the presence of TEs. Together our results reveal a chromatin-transposon-Wnt signaling axis that regulates stem cell fate.


Assuntos
Diferenciação Celular/genética , Elementos de DNA Transponíveis/genética , Proteínas de Drosophila/genética , Glicoproteínas/genética , Oogênese/genética , Proteínas Wnt/genética , Animais , Cromatina/genética , Proteínas de Drosophila/biossíntese , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Genoma de Inseto , Células Germinativas/crescimento & desenvolvimento , Células Germinativas/metabolismo , Glicoproteínas/biossíntese , Histona-Lisina N-Metiltransferase , Humanos , Camundongos , Células-Tronco/metabolismo , Proteínas Wnt/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...