Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 9(1): 3865, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30279508

RESUMO

An intricate network of crevices adorns the skin surface of the African bush elephant, Loxodonta africana. These micrometre-wide channels enhance the effectiveness of thermal regulation (by water retention) as well as protection against parasites and intense solar radiation (by mud adherence). While the adaptive value of these structures is well established, their morphological characterisation and generative mechanism are unknown. Using microscopy, computed tomography and a custom physics-based lattice model, we show that African elephant skin channels are fractures of the animal brittle and desquamation-deficient skin outermost layer. We suggest that the progressive thickening of the hyperkeratinised stratum corneum causes its fracture due to local bending mechanical stress in the troughs of a lattice of skin millimetric elevations. The African elephant skin channels are therefore generated by thickening of a brittle material on a locally-curved substrate rather than by a canonical tensile cracking process caused by frustrated shrinkage.


Assuntos
Elefantes/fisiologia , Fenômenos Fisiológicos da Pele , Pele/anatomia & histologia , Animais , Elefantes/anatomia & histologia
2.
PLoS One ; 10(6): e0126740, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26039509

RESUMO

While recent imaging techniques provide insights into biological processes from the molecular to the cellular scale, phenotypes at larger scales remain poorly amenable to quantitative analyses. For example, investigations of the biophysical mechanisms generating skin morphological complexity and diversity would greatly benefit from 3D geometry and colour-texture reconstructions. Here, we report on R(2)OBBIE-3D, an integrated system that combines a robotic arm, a high-resolution digital colour camera, an illumination basket of high-intensity light-emitting diodes and state-of-the-art 3D-reconstruction approaches. We demonstrate that R(2)OBBIE generates accurate 3D models of biological objects between 1 and 100 cm, makes multiview photometric stereo scanning possible in practical processing times, and enables the capture of colour-texture and geometric resolutions better than 15 µm without the use of magnifying lenses. R(2)OBBIE has the potential to greatly improve quantitative analyses of phenotypes in addition to providing multiple new applications in, e.g., biomedical science.


Assuntos
Imageamento Tridimensional , Robótica/instrumentação , Robótica/métodos , Humanos
3.
Evodevo ; 5: 33, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25705371

RESUMO

BACKGROUND: Mammals exhibit a remarkable variety of phenotypes and comparative studies using novel model species are needed to uncover the evolutionary developmental mechanisms generating this diversity. Here, we undertake a developmental biology and numerical modeling approach to investigate the development of skin appendages in the spiny mouse, Acomys dimidiatus. RESULTS: We demonstrate that Acomys spines, possibly involved in display and protection, are enlarged awl hairs with a concave morphology. The Acomys spines originate from enlarged placodes that are characterized by a rapid downwards growth which results in voluminous follicles. The dermal condensation (dermal papilla) at the core of the follicle is very large and exhibits a curved geometry. Given its off-centered position, the dermal papilla generates two waves of anisotropic proliferation, first of the posterior matrix, then of the anterior inner root sheath (IRS). Higher in the follicle, the posterior and anterior cortex cross-section areas substantially decrease due to cortex cell elongation and accumulation of keratin intermediate filaments. Milder keratinization in the medulla gives rise to a foamy material that eventually collapses under the combined compression of the anterior IRS and elongation of the cortex cells. Simulations, using linear elasticity theory and the finite-element method, indicate that these processes are sufficient to replicate the time evolution of the Acomys spine layers and the final shape of the emerging spine shaft. CONCLUSIONS: Our analyses reveal how hair follicle morphogenesis has been altered during the evolution of the Acomys lineage, resulting in a shift from ancestral awl follicles to enlarged asymmetrical spines. This study contributes to a better understanding of the evolutionary developmental mechanisms that generated the great diversity of skin appendage phenotypes observed in mammals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...