Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Res ; 45(1): 263-73, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20696456

RESUMO

The study aims to evaluate the role of a polymeric substrate (starch) on sludge settleability. Despite being an important COD component of the wastewater, the relationship between polymeric substrates and bulking sludge has been hardly studied. The polymers are hydrolysed at a rate smaller than the consumption rate of monomers. This means that the soluble substrate resulting from hydrolysis is likely to be present at growth rate limiting concentrations. According to the kinetic selection theory this leads to bulking sludge. However, a recently postulated theory suggests that, strong diffusion limited micro-gradients of substrate concentration inside flocs lead to bulking sludge, and not a low substrate concentration as such. If the polymeric COD is first incorporated in the sludge floc and afterwards hydrolysed in the sludge floc then there is essentially no substrate gradient inside the biological flocs. The experiments showed that conditions leading to bulking sludge with monomers (glucose) did not lead to bulking when starch was used. A bulking sludge event was even cured just by substituting the monomer with starch. These results are clearly in line with a diffusion gradient--based theory for bulking sludge. Nevertheless, flocs growing on starch are more open, fluffy and porous than flocs formed on maltose or glucose, most likely because the starch needs to be hydrolysed at the surface of the micro-colonies forming the flocculated sludge. Some additional observations on occurrence of filamentous bacteria in oxygen diffusion limited systems are also discussed in this manuscript.


Assuntos
Polímeros/metabolismo , Esgotos/microbiologia , Eliminação de Resíduos Líquidos/métodos , Reatores Biológicos/microbiologia
2.
Environ Sci Technol ; 38(21): 5632-41, 2004 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-15575282

RESUMO

An individual-based model, originally developed for a biofilm system, was adapted to simulate three-dimensional formation of activated sludge flocs. The model was extended to two different bacterial morphotypes (floc-forming and filamentous bacteria), allowing spatial development of the floc according to the bacterial morphology, diffusion, reaction, and growth processes. The model needed also extension with a process for attachment of individual cells. Despite being in an early stage of development, the model is already a tool that enables us to obtain useful information about the microfloc environment. The model indicates that filamentous bacterial morphology and substrate microgradients are important aspects in the formation of bacterial structures. In mass transport-limited regimes filamentous bacterial structures prevail, whereas in growth-limited regimes irregular shaped flocs with fingerlike structures are dominant. These modeling results suggest that activated sludge flocs and biofilms might be different manifestations of the same phenomena. The model results support the hypothesis that floc-macrogradients can be the most important parameter for development of bulking sludge. The model suggests that attachment has a very strong effect on floc structure, leading to enhancement of the effect of substrate microgradients.


Assuntos
Bactérias Aeróbias/metabolismo , Esgotos/microbiologia , Microbiologia da Água , Bactérias Aeróbias/citologia , Biofilmes , Biomassa , Difusão , Floculação , Cinética , Modelos Biológicos , Oxigênio/metabolismo , Dinâmica Populacional , Esgotos/química , Eliminação de Resíduos Líquidos
3.
Biotechnol Bioeng ; 86(2): 125-35, 2004 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-15052632

RESUMO

Bulking sludge problems are commonly reported in biological nutrient removal (BNR) systems. This has led to the general belief that intrinsic BNR conditions favor the growth of undesirable and excessive filamentous bacteria. The present study shows that other factors have a major role in bulking, and not the BNR conditions. These factors have been verified in well-controlled, strictly anoxic-aerobic and strictly anaerobic-aerobic sequencing batch reactor systems. The experimental results show that conditions known to be responsible for bulking sludge in aerobic systems (i.e., low concentration of electron donor and/or electron acceptor) did not lead to bulking. Even when acetate was present at very low concentrations in the aerobic stage of an anaerobic-aerobic bio-P system, the sludge settleability remained very good. This clearly demonstrates that good bio-P activity can stabilize and improve sludge settleability. The presence of microaerophilic conditions in the anoxic stage of the anoxic-aerobic system was the only factor leading to worsening sludge settling characteristics. The results are discussed in light of our previous hypothesis about the importance of diffusion-limited substrate uptake for the development of filamentous structures in biological flocs. The hypothesis is extended to anaerobic-aerobic and anoxic-aerobic conditions, typical of BNR-activated sludge systems. Taking into account the effect of feeding patterns on biochemical rates and on the development of filamentous bacterial structures, we recommend the adoption of plug-flow selector configurations, with strictly anaerobic and/or strictly anoxic conditions, wherein microaerophilic conditions are excluded, in order to maintain reliable and robust BNR performance.


Assuntos
Acetatos/metabolismo , Bactérias Aeróbias/fisiologia , Reatores Biológicos/microbiologia , Técnicas de Cultura de Células/métodos , Esgotos/química , Esgotos/microbiologia , Poluentes Químicos da Água/metabolismo , Biodegradação Ambiental , Consumo de Oxigênio/fisiologia , Purificação da Água/métodos
4.
Water Res ; 38(4): 793-817, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14769404

RESUMO

This paper reviews the long-standing bulking sludge problem in activated sludge systems. Despite the extensive amount of research that has been done on bulking sludge, it still occurs world-wide and a comprehensive solution does not seem to be available. Bulking sludge can be approached as a microbiological problem (occurrence of a specific filamentous bacterium) or as an engineering problem (growth of bacteria with a filamentous morphology). In the first case species-specific solutions should be found, whereas in the latter case, a generic approach might be available. Since bulking sludge is caused by a group of bacteria with a specific morphology, but not a specific physiology we believe that a generic approach would be feasible. Several theories for bulking sludge are discussed. Based on these theories the application and associated problems with the use of biological selectors are critically evaluated. Finally, a set of open research questions is identified.


Assuntos
Eliminação de Resíduos/métodos , Esgotos , Eliminação de Resíduos Líquidos/métodos , Bactérias/crescimento & desenvolvimento , Biomassa , Engenharia , Falha de Equipamento , Guias como Assunto , Cinética , Dinâmica Populacional
5.
Water Res ; 37(11): 2555-70, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12753833

RESUMO

The selection of filamentous bacteria is often assumed to be associated with specific microbial properties such as growth rate, substrate uptake rate, substrate affinity and potential for substrate storage. In this study we aimed to verify some of these factors. Sequencing batch reactor (SBR) systems were used to scale-down aerobic activated sludge systems with an aerobic selector. Adding acetate in different aerobic feeding periods allowed us to simulate a variable relative size of aerobic selector with different bulk liquid substrate concentrations. The experiments showed that as expected, the aerobic fill time ratio (FTR(ox)) and the corresponding feast period, which can be assumed similar to contact time in an aerobic selector, had a strong effect on the sludge settleability. Promoting a strong substrate gradient in the SBR (FTR(ox)<5.4%) resulted in good sludge settleability (SVI<120mLg(-1)). Whenever acetate was added in a limiting rate (FTR(ox)>6.2%), a condition in which the acetate concentration in the reactor was always very low, the sludge settleability decreased (SVI>150mLg(-1)). Sludge settleability could be improved by changing the feeding strategy to a pulse feed. The maximum specific acetate uptake rate and poly beta-hydroxybutyrate (PHB) production rate of bad settling sludge, including bulking sludge, was similar to well-settling sludge, which is not in accordance with the general assumptions that well settling sludge have a higher maximal substrate uptake rate and better storage capacities. An alternative hypothesis for the development of filamentous structures in biological flocs has been formulated. It is hypothesized that bulking sludge originates from the presence of substrate gradients in sludge aggregates. Whereas at low bulk liquid substrate concentration filamentous bacteria give easier access to the substrate at the outside of the flocs and thereby proliferate, at high bulk liquid substrate concentration there is no substrate advantage for filamentous organisms and smooth bacterial structures predominate. In this hypothesis there is no need for an intrinsic difference in kinetic parameters between floc and filamentous bacteria. Where presence of filamentous bacteria is related to process conditions, the presence of a specific filament is likely due to presence of a specific limiting substrate.


Assuntos
Bactérias Aeróbias/fisiologia , Esgotos/química , Esgotos/microbiologia , Microbiologia da Água , Difusão , Cinética , Oxigênio , Dinâmica Populacional , Eliminação de Resíduos Líquidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...