Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
DNA Repair (Amst) ; 141: 103715, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39029375

RESUMO

Glioblastoma (GBM) is a highly aggressive brain tumor associated with poor patient survival. The current standard treatment involves invasive surgery, radiotherapy, and chemotherapy employing temozolomide (TMZ). Resistance to TMZ is, however, a major challenge. Previous work from our group has identified candidate genes linked to TMZ resistance, including genes encoding translesion synthesis (TLS) DNA polymerases iota (PolÉ©) and kappa (Polκ). These specialized enzymes are known for bypassing lesions and tolerating DNA damage. Here, we investigated the roles of PolÉ© and Polκ in TMZ resistance, employing MGMT-deficient U251-MG glioblastoma cells, with knockout of either POLI or POLK genes encoding PolÉ© and Polκ, respectively, and assess their viability and genotoxic stress responses upon subsequent TMZ treatment. Cells lacking either of these polymerases exhibited a significant decrease in viability following TMZ treatment compared to parental counterparts. The restoration of the missing polymerase led to a recovery of cell viability. Furthermore, knockout cells displayed increased cell cycle arrest, mainly in late S-phase, and lower levels of genotoxic stress after TMZ treatment, as assessed by a reduction of γH2AX foci and flow cytometry data. This implies that TMZ treatment does not trigger a significant H2AX phosphorylation response in the absence of these proteins. Interestingly, combining TMZ with Mirin (double-strand break repair pathway inhibitor) further reduced the cell viability and increased DNA damage and γH2AX positive cells in TLS KO cells, but not in parental cells. These findings underscore the crucial roles of PolÉ© and Polκ in conferring TMZ resistance and the potential backup role of homologous recombination in the absence of these TLS polymerases. Targeting these TLS enzymes, along with double-strand break DNA repair inhibition, could, therefore, provide a promising strategy to enhance TMZ's effectiveness in treating GBM.

2.
Photochem Photobiol ; 100(1): 4-18, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37926965

RESUMO

Xeroderma pigmentosum (XP) variant cells are deficient in the translesion synthesis (TLS) DNA polymerase Polη (eta). This protein contributes to DNA damage tolerance, bypassing unrepaired UV photoproducts and allowing S-phase progression with minimal delay. In the absence of Polη, backup polymerases perform TLS of UV lesions. However, which polymerase plays this role in human cells remains an open question. Here, we investigated the potential role of Polι (iota) in bypassing ultraviolet (UV) induced photoproducts in the absence of Polη, using NER-deficient (XP-C) cells knocked down for Polι and/or Polη genes. Our results indicate that cells lacking either Polι or Polη have increased sensitivity to UVC radiation. The lack of both TLS polymerases led to increased cell death and defects in proliferation and migration. Loss of both polymerases induces a significant replication fork arrest and G1/S-phase blockage, compared to the lack of Polη alone. In conclusion, we propose that Polι acts as a bona fide backup for Polη in the TLS of UV-photoproducts.


Assuntos
DNA Polimerase iota , Xeroderma Pigmentoso , Humanos , Dano ao DNA , Síntese de DNA Translesão , Replicação do DNA , Xeroderma Pigmentoso/genética , Raios Ultravioleta , Reparo do DNA
3.
Front Aging ; 4: 1296409, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38021400

RESUMO

Rothmund-Thomson syndrome (RTS) is a rare autosomal recessive disorder characterized by a range of clinical symptoms, including poikiloderma, juvenile cataracts, short stature, sparse hair, eyebrows/eyelashes, nail dysplasia, and skeletal abnormalities. While classically associated with mutations in the RECQL4 gene, which encodes a DNA helicase involved in DNA replication and repair, three additional genes have been recently identified in RTS: ANAPC1, encoding a subunit of the APC/C complex; DNA2, which encodes a nuclease/helicase involved in DNA repair; and CRIPT, encoding a poorly characterized protein implicated in excitatory synapse formation and splicing. Here, we review the clinical spectrum of RTS patients, analyze the genetic basis of the disease, and discuss molecular functions of the affected genes, drawing some novel genotype-phenotype correlations and proposing avenues for future studies into this enigmatic disorder.

4.
J Biol Chem ; 299(5): 104656, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36990216

RESUMO

Proliferating cell nuclear antigen (PCNA) is a sliding clamp protein that coordinates DNA replication with various DNA maintenance events that are critical for human health. Recently, a hypomorphic homozygous serine to isoleucine (S228I) substitution in PCNA was described to underlie a rare DNA repair disorder known as PCNA-associated DNA repair disorder (PARD). PARD symptoms range from UV sensitivity, neurodegeneration, telangiectasia, and premature aging. We, and others, previously showed that the S228I variant changes the protein-binding pocket of PCNA to a conformation that impairs interactions with specific partners. Here, we report a second PCNA substitution (C148S) that also causes PARD. Unlike PCNA-S228I, PCNA-C148S has WT-like structure and affinity toward partners. In contrast, both disease-associated variants possess a thermostability defect. Furthermore, patient-derived cells homozygous for the C148S allele exhibit low levels of chromatin-bound PCNA and display temperature-dependent phenotypes. The stability defect of both PARD variants indicates that PCNA levels are likely an important driver of PARD disease. These results significantly advance our understanding of PARD and will likely stimulate additional work focused on clinical, diagnostic, and therapeutic aspects of this severe disease.


Assuntos
Alelos , Ataxia Telangiectasia , Reparo do DNA , Antígeno Nuclear de Célula em Proliferação , Temperatura , Humanos , Ataxia Telangiectasia/genética , Ataxia Telangiectasia/metabolismo , Reparo do DNA/genética , Replicação do DNA , Antígeno Nuclear de Célula em Proliferação/química , Antígeno Nuclear de Célula em Proliferação/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Ligação Proteica/genética , Estabilidade Proteica , Cromatina/genética , Cromatina/metabolismo , Especificidade por Substrato
5.
Microorganisms ; 10(10)2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36296238

RESUMO

Mycoplasma hominis can be isolated from the human urogenital tract. However, its interaction with the host remains poorly understood. In this study, we aimed to assess the effects of M. hominis infection on primary human keratinocytes (PHKs). Cells were quantified at different phases of the cell cycle. Proteins involved in cell cycle regulation and apoptosis progression were evaluated. The expression of genes encoding proteins that are associated with the DNA damage response and Toll-like receptor pathways was evaluated, and the cytokines involved in inflammatory responses were quantified. A greater number of keratinocytes were observed in the Sub-G0/G1 phase after infection with M. hominis. In the viable keratinocytes, infection resulted in G2/M-phase arrest; GADD45A expression was increased, as was the expression of proteins such as p53, p27, and p21 and others involved in apoptosis regulation and oxidative stress. In infected PHKs, the expression of genes associated with the Toll-like receptor pathways showed a change, and the production of IFN-γ, interleukin (IL) 1ß, IL-18, IL-6, and tumour necrosis factor alpha increased. The infection of PHKs by M. hominis causes cellular damage that can affect the cell cycle by activating the response pathways to cellular damage, oxidative stress, and Toll-like receptors. Overall, this response culminated in the reduction of cell proliferation/viability in vitro.

6.
Genet Med ; 23(4): 661-668, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33420346

RESUMO

PURPOSE: To identify novel genes associated with intellectual disability (ID) in four unrelated families. METHODS: Here, through exome sequencing and international collaboration, we report eight individuals from four unrelated families of diverse geographic origin with biallelic loss-of-function variants in UBE4A. RESULTS: Eight evaluated individuals presented with syndromic intellectual disability and global developmental delay. Other clinical features included hypotonia, short stature, seizures, and behavior disorder. Characteristic features were appreciated in some individuals but not all; in some cases, features became more apparent with age. We demonstrated that UBE4A loss-of-function variants reduced RNA expression and protein levels in clinical samples. Mice generated to mimic patient-specific Ube4a loss-of-function variant exhibited muscular and neurological/behavioral abnormalities, some of which are suggestive of the clinical abnormalities seen in the affected individuals. CONCLUSION: These data indicate that biallelic loss-of-function variants in UBE4A cause a novel intellectual disability syndrome, suggesting that UBE4A enzyme activity is required for normal development and neurological function.


Assuntos
Nanismo , Deficiência Intelectual , Ubiquitina-Proteína Ligases/genética , Animais , Criança , Deficiências do Desenvolvimento/genética , Humanos , Deficiência Intelectual/genética , Camundongos , Hipotonia Muscular , Fenótipo , Síndrome , Sequenciamento do Exoma
7.
Cell Death Dis ; 10(6): 459, 2019 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-31189884

RESUMO

Tissue architecture and cell-extracellular matrix (cell-ECM) interaction determine the organ specificity; however, the influences of these factors on anticancer drugs preclinical studies are highly neglected. For considering such aspects, three-dimensional (3D) cell culture models are relevant tools for accurate analysis of cellular responses to chemotherapy. Here we compared the MCF-7 breast cancer cells responses to cisplatin in traditional two-dimensional (2D) and in 3D-reconstituted basement membrane (3D-rBM) cell culture models. The results showed a substantial increase of cisplatin resistance mediated by 3D microenvironment. This phenotype was independent of p53 status and autophagy activity and was also observed for other cellular models, including lung cancer cells. Such strong decrease on cellular sensitivity was not due to differences on drug-induced DNA damage, since similar levels of γ-H2AX and cisplatin-DNA adducts were detected under both conditions. However, the processing of these cisplatin-induced DNA lesions was very different in 2D and 3D cultures. Unlike cells in monolayer, cisplatin-induced DNA damage is persistent in 3D-cultured cells, which, consequently, led to high senescence induction. Moreover, only 3D-cultured cells were able to progress through S cell cycle phase, with unaffected replication fork progression, due to the upregulation of translesion (TLS) DNA polymerase expression and activation of the ATR-Chk1 pathway. Co-treatment with VE-821, a pharmacological inhibitor of ATR, blocked the 3D-mediated changes on cisplatin response, including low sensitivity and high TLS capacity. In addition, ATR inhibition also reverted induction of REV3L by cisplatin treatment. By using REV3L-deficient cells, we showed that this TLS DNA polymerase is essential for the cisplatin sensitization effect mediated by VE-821. Altogether, our results demonstrate that 3D-cell architecture-associated resistance to cisplatin is due to an efficient induction of REV3L and TLS, dependent of ATR. Thus co-treatment with ATR inhibitors might be a promising strategy for enhancement of cisplatin treatment efficiency in breast cancer patients.


Assuntos
Antineoplásicos/farmacologia , Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Neoplasias da Mama/tratamento farmacológico , Microambiente Celular/efeitos dos fármacos , Cisplatino/farmacologia , Células A549 , Antineoplásicos/uso terapêutico , Proteínas Mutadas de Ataxia Telangiectasia/genética , Autofagia/efeitos dos fármacos , Autofagia/genética , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Técnicas de Cultura de Células/métodos , Senescência Celular/efeitos dos fármacos , Quinase 1 do Ponto de Checagem/genética , Quinase 1 do Ponto de Checagem/metabolismo , Cisplatino/uso terapêutico , Dano ao DNA/efeitos dos fármacos , Replicação do DNA/efeitos dos fármacos , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , DNA Polimerase Dirigida por DNA/química , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Resistencia a Medicamentos Antineoplásicos , Feminino , Histonas/metabolismo , Humanos , Células MCF-7 , Pirazinas/farmacologia , Pontos de Checagem da Fase S do Ciclo Celular/efeitos dos fármacos , Sulfonas/farmacologia , Células Tumorais Cultivadas , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
8.
Cell Death Dis, v. 10, 459, jun. 2019
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2776

RESUMO

Tissue architecture and cell–extracellular matrix (cell–ECM) interaction determine the organ specificity; however, the influences of these factors on anticancer drugs preclinical studies are highly neglected. For considering such aspects, three-dimensional (3D) cell culture models are relevant tools for accurate analysis of cellular responses to chemotherapy. Here we compared the MCF-7 breast cancer cells responses to cisplatin in traditional two-dimensional (2D) and in 3D-reconstituted basement membrane (3D-rBM) cell culture models. The results showed a substantial increase of cisplatin resistance mediated by 3D microenvironment. This phenotype was independent of p53 status and autophagy activity and was also observed for other cellular models, including lung cancer cells. Such strong decrease on cellular sensitivity was not due to differences on drug-induced DNA damage, since similar levels of ?-H2AX and cisplatin–DNA adducts were detected under both conditions. However, the processing of these cisplatin-induced DNA lesions was very different in 2D and 3D cultures. Unlike cells in monolayer, cisplatin-induced DNA damage is persistent in 3D-cultured cells, which, consequently, led to high senescence induction. Moreover, only 3D-cultured cells were able to progress through S cell cycle phase, with unaffected replication fork progression, due to the upregulation of translesion (TLS) DNA polymerase expression and activation of the ATR-Chk1 pathway. Co-treatment with VE-821, a pharmacological inhibitor of ATR, blocked the 3D-mediated changes on cisplatin response, including low sensitivity and high TLS capacity. In addition, ATR inhibition also reverted induction of REV3L by cisplatin treatment. By using REV3L-deficient cells, we showed that this TLS DNA polymerase is essential for the cisplatin sensitization effect mediated by VE-821. Altogether, our results demonstrate that 3D-cell architecture-associated resistance to cisplatin is due to an efficient induction of REV3L and TLS, dependent of ATR. Thus co-treatment with ATR inhibitors might be a promising strategy for enhancement of cisplatin treatment efficiency in breast cancer patients.

9.
Cell death dis ; 10: 459, 2019.
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib16056

RESUMO

Tissue architecture and cell–extracellular matrix (cell–ECM) interaction determine the organ specificity; however, the influences of these factors on anticancer drugs preclinical studies are highly neglected. For considering such aspects, three-dimensional (3D) cell culture models are relevant tools for accurate analysis of cellular responses to chemotherapy. Here we compared the MCF-7 breast cancer cells responses to cisplatin in traditional two-dimensional (2D) and in 3D-reconstituted basement membrane (3D-rBM) cell culture models. The results showed a substantial increase of cisplatin resistance mediated by 3D microenvironment. This phenotype was independent of p53 status and autophagy activity and was also observed for other cellular models, including lung cancer cells. Such strong decrease on cellular sensitivity was not due to differences on drug-induced DNA damage, since similar levels of ?-H2AX and cisplatin–DNA adducts were detected under both conditions. However, the processing of these cisplatin-induced DNA lesions was very different in 2D and 3D cultures. Unlike cells in monolayer, cisplatin-induced DNA damage is persistent in 3D-cultured cells, which, consequently, led to high senescence induction. Moreover, only 3D-cultured cells were able to progress through S cell cycle phase, with unaffected replication fork progression, due to the upregulation of translesion (TLS) DNA polymerase expression and activation of the ATR-Chk1 pathway. Co-treatment with VE-821, a pharmacological inhibitor of ATR, blocked the 3D-mediated changes on cisplatin response, including low sensitivity and high TLS capacity. In addition, ATR inhibition also reverted induction of REV3L by cisplatin treatment. By using REV3L-deficient cells, we showed that this TLS DNA polymerase is essential for the cisplatin sensitization effect mediated by VE-821. Altogether, our results demonstrate that 3D-cell architecture-associated resistance to cisplatin is due to an efficient induction of REV3L and TLS, dependent of ATR. Thus co-treatment with ATR inhibitors might be a promising strategy for enhancement of cisplatin treatment efficiency in breast cancer patients.

10.
Nucleic Acids Res ; 44(12): 5717-31, 2016 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-27095204

RESUMO

Ultraviolet-induced 6-4 photoproducts (6-4PP) and cyclobutane pyrimidine dimers (CPD) can be tolerated by translesion DNA polymerases (TLS Pols) at stalled replication forks or by gap-filling. Here, we investigated the involvement of Polη, Rev1 and Rev3L (Polζ catalytic subunit) in the specific bypass of 6-4PP and CPD in repair-deficient XP-C human cells. We combined DNA fiber assay and novel methodologies for detection and quantification of single-stranded DNA (ssDNA) gaps on ongoing replication forks and postreplication repair (PRR) tracts in the human genome. We demonstrated that Rev3L, but not Rev1, is required for postreplicative gap-filling, while Polη and Rev1 are responsible for TLS at stalled replication forks. Moreover, specific photolyases were employed to show that in XP-C cells, CPD arrest replication forks, while 6-4PP are responsible for the generation of ssDNA gaps and PRR tracts. On the other hand, in the absence of Polη or Rev1, both types of lesion block replication forks progression. Altogether, the data directly show that, in the human genome, Polη and Rev1 bypass CPD and 6-4PP at replication forks, while only 6-4PP are also tolerated by a Polζ-dependent gap-filling mechanism, independent of S phase.


Assuntos
Reparo do DNA , Replicação do DNA , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/genética , DNA Polimerase Dirigida por DNA/genética , Proteínas Nucleares/genética , Nucleotidiltransferases/genética , Adenoviridae/genética , Adenoviridae/metabolismo , Linhagem Celular Transformada , Dano ao DNA , Proteínas de Ligação a DNA/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , Desoxirribodipirimidina Fotoliase , Fibroblastos/citologia , Fibroblastos/metabolismo , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Genoma Humano , Humanos , Proteínas Nucleares/metabolismo , Nucleotidiltransferases/metabolismo , Dímeros de Pirimidina/metabolismo , Fase S/genética , Transdução Genética , Raios Ultravioleta
11.
Free Radic Biol Med ; 90: 91-100, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26577174

RESUMO

Chloroquine (CQ), a quinolone derivative widely used to treat and prevent malaria, has been shown to exert a potent adjuvant effect when combined with conventional glioblastoma therapy. Despite inducing lysosome destabilization and activating p53 in human glioma cells, the mechanisms underlying cell death induced by this drug are poorly understood. Here, we analyzed in a time- and dose-dependent manner, the effects of CQ upon mitochondria integrity, autophagy regulation and redox processes in four human glioma cell lines that differ in their resistance to this drug. NAC-containing media protected cells against CQ-induced loss of mitochondrial membrane potential (MMP), autophagic vacuoles (LC3II) accumulation and loss of cell viability induced by CQ. However, we noticed that part of this protection was due to media acidification in NAC preparations, alerting for problems in experimental procedures using NAC. The results indicate that although CQ induces accumulation of LC3II, mitochondria, and oxidative stress, neither of these events is clearly correlated to cell death induced by this drug. The only event elicited in all cell lines at equitoxic doses of CQ was the loss of MMP, indicating that mitochondrial stability is important for cells resistance to this drug. Finally, the data indicate that higher steady-state MMP values can predict cell resistance to CQ treatment.


Assuntos
Cloroquina/farmacologia , Glioma/tratamento farmacológico , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Acetilcisteína/farmacologia , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Glioma/metabolismo , Glioma/patologia , Humanos , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...