Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Andrology ; 7(3): 373-381, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30920782

RESUMO

BACKGROUND: Sperm DNA integrity is crucial for transmission of genetic information to future generations and DNA damage can occur during chromatin packaging. Chromatin packaging involves the replacement of somatic nucleosomal histones by nuclear proteins called protamines. Protamine 1 (PRM1) is transcribed and translated in spermatids of all mammals; however, protamine 2 (PRM2) is transcribed in low levels in spermatids and it is not yet described in bull mature spermatozoa. OBJECTIVES: The aim of this study was to assess gene and protein expression of PRM2 and corroborate gene and protein expression of PRM1 in bull spermatozoa and testis. MATERIALS AND METHODS: For this purpose, absolute q-RT-PCR was performed to calculate the number of copies of PRM1 and PRM2 mRNAs in bovine epididymal spermatozoa and testicular tissue. Western blot and mass spectrometry were performed to identify PRM1 and PRM2 in samples of bovine epididymal spermatozoa. Samples of bovine testicular tissue were collected to identify PRM1 and PRM2 by immunohistochemistry. RESULTS: We evaluated that the number of PRM1 mRNA copies was about hundred times higher than PRM2 mRNA copies in sperm and testicular samples (p < 0.0001). In addition, we estimated the PRM1: PRM2 ratio based on mRNA number of copies. In spermatozoa, the ratio was 1: 0.014, and in testicle, the ratio was 1: 0.009. We also evaluated the immunolocalization for PRM1 and PRM2 in bovine testis, and both proteins were detected in spermatids. Western blot and mass spectrometry in bovine epididymal spermatozoa confirmed these results. CONCLUSION: Our work identifies, for the first time, PRM2 in bovine epididymal spermatozoa and in testis. Further studies are still needed to understand the role of PRM2 on the chromatin of the spermatozoa and to verify how possible changes in PRM2 levels may influence the bull fertility.


Assuntos
Bovinos/metabolismo , Protaminas/metabolismo , Espermatozoides/metabolismo , Testículo/metabolismo , Animais , Núcleo Celular/metabolismo , Epididimo/citologia , Expressão Gênica , Masculino , Protaminas/genética , RNA Mensageiro/metabolismo
2.
Microbial Pathogenesis ; 47(2): 87-93, Aug.2009.
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP, SESSP-IBACERVO | ID: biblio-1064751

RESUMO

The role of innate immune responses in protection against leptospirosis remains unclear. We examined the expression of the chemokines CCL2/JE (MCP-1), CCL3/MIP-1á (MIP-1á) and CXCL1/KC (IL-8) regarding resistance and susceptibility to leptospirosis in experimental mice models BALB/c and C3H/HeJ, respectively. A virulent strain of Leptospira interrogans serovar Copenhageni was used in this study. Twenty-five animals of each mouse strain of C3H/HeJ and BALB/c, were infected intraperitoneally with 106 cells. Five un-infected animals of each strain were kept as control. Mortality of C3H/HeJ mouse was observed while BALB/c mice were asymptomatic. The presence of leptospire DNA in tissues of infected animals was demonstrated by PCR. Chemokines were measured in serum, spleen, liver, kidney and lung of both strains of animals using immunoenzymatic assay (ELISA). Elevations in the levels of chemokines MCP-1 and IL-8 occurred in all organs and sera of C3H/HeJ and BALB/c infected mice. The levels of MIP-1á were lower when compared to MCP-1 and IL-8 in all analyzed organs, with a slight increase in liver and kidney. Our results indicate that the expression of inflammatory mediators can vary greatly, depending on the tissue and mouse strains. It is possible that the resistance to Leptospira can be partially correlated to the increase of MIP-1á observed in BALB/c mice, while an increasing and a sustained expression of MCP-1 and IL-8 in the lungs of C3H/HeJ mice can be correlated to the severity and progression of leptospirosis.


Assuntos
Animais , Camundongos , Leptospira interrogans/patogenicidade , Leptospirose/imunologia , Imunidade Inata
3.
FEMS Microbiology Letters ; 244(2): 305-313, Mar.15,2005.
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP, SESSP-IBACERVO | ID: biblio-1062816

RESUMO

Leptospirosis is an important global human and veterinary health problem. Humans can be infected by exposure to chronically infected animals and their environment. An important focus of the current leptospiral research is the identification of outer membrane proteins (OMPs). Due to their location, leptospiral OMPs are likely to be relevant in host-pathogen interactions, hence their potential ability to stimulate heterologous immunity. The existing whole-genome sequence of Leptospira interrogans serovar Copenhageni offers a unique opportunity to search for cell surface proteins. Predicted genes encoding potential surface proteins were amplified from genomic DNA by PCR methodology and cloned into an Escherichia coli expression system. The partially purified recombinant proteins were probed by Western blotting with sera from human patients diagnosed with leptospirosis. Sixteen proteins, out of a hundred tested, were recognized by antibodies present in human sera. Four of these proteins were conserved among eight serovars of L. interrogans and absent in the non-pathogenic Leptospira biflexa. These proteins might be useful for the diagnosis of the disease as well as potential vaccine candidates.


Assuntos
Humanos , Escherichia coli/genética , Escherichia coli/metabolismo , Leptospira interrogans/genética , Leptospira interrogans/imunologia , Leptospira interrogans/química , Leptospirose/imunologia , Leptospirose/prevenção & controle , Antígenos de Bactérias/imunologia , Proteínas Recombinantes/imunologia , Proteínas da Membrana Bacteriana Externa/análise , Proteínas da Membrana Bacteriana Externa/química , Vacinas Sintéticas/imunologia
4.
Braz J Med Biol Res ; 37(4): 459-77, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15064809

RESUMO

We report novel features of the genome sequence of Leptospira interrogans serovar Copenhageni, a highly invasive spirochete. Leptospira species colonize a significant proportion of rodent populations worldwide and produce life-threatening infections in mammals. Genomic sequence analysis reveals the presence of a competent transport system with 13 families of genes encoding for major transporters including a three-member component efflux system compatible with the long-term survival of this organism. The leptospiral genome contains a broad array of genes encoding regulatory system, signal transduction and methyl-accepting chemotaxis proteins, reflecting the organism's ability to respond to diverse environmental stimuli. The identification of a complete set of genes encoding the enzymes for the cobalamin biosynthetic pathway and the novel coding genes related to lipopolysaccharide biosynthesis should bring new light to the study of Leptospira physiology. Genes related to toxins, lipoproteins and several surface-exposed proteins may facilitate a better understanding of the Leptospira pathogenesis and may serve as potential candidates for vaccine.


Assuntos
Genoma Bacteriano , Leptospira interrogans/genética , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/fisiologia , Leptospira interrogans/classificação , Leptospira interrogans/fisiologia , Dados de Sequência Molecular , Transporte Proteico/genética , Transporte Proteico/fisiologia , Análise de Sequência de DNA
5.
Braz. j. med. biol. res ; 37(4): 459-478, Apr. 2004. ilus, tab, graf
Artigo em Inglês | LILACS | ID: lil-357116

RESUMO

We report novel features of the genome sequence of Leptospira interrogans serovar Copenhageni, a highly invasive spirochete. Leptospira species colonize a significant proportion of rodent populations worldwide and produce life-threatening infections in mammals. Genomic sequence analysis reveals the presence of a competent transport system with 13 families of genes encoding for major transporters including a three-member component efflux system compatible with the long-term survival of this organism. The leptospiral genome contains a broad array of genes encoding regulatory system, signal transduction and methyl-accepting chemotaxis proteins, reflecting the organism's ability to respond to diverse environmental stimuli. The identification of a complete set of genes encoding the enzymes for the cobalamin biosynthetic pathway and the novel coding genes related to lipopolysaccharide biosynthesis should bring new light to the study of Leptospira physiology. Genes related to toxins, lipoproteins and several surface-exposed proteins may facilitate a better understanding of the Leptospira pathogenesis and may serve as potential candidates for vaccine.


Assuntos
Animais , Genoma Bacteriano , Leptospira interrogans , Proteínas de Bactérias , Leptospira interrogans , Dados de Sequência Molecular , Transporte Proteico , Análise de Sequência de DNA
6.
J Bacteriol ; 186(7): 2164-72, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15028702

RESUMO

Leptospira species colonize a significant proportion of rodent populations worldwide and produce life-threatening infections in accidental hosts, including humans. Complete genome sequencing of Leptospira interrogans serovar Copenhageni and comparative analysis with the available Leptospira interrogans serovar Lai genome reveal that despite overall genetic similarity there are significant structural differences, including a large chromosomal inversion and extensive variation in the number and distribution of insertion sequence elements. Genome sequence analysis elucidates many of the novel aspects of leptospiral physiology relating to energy metabolism, oxygen tolerance, two-component signal transduction systems, and mechanisms of pathogenesis. A broad array of transcriptional regulation proteins and two new families of afimbrial adhesins which contribute to host tissue colonization in the early steps of infection were identified. Differences in genes involved in the biosynthesis of lipopolysaccharide O side chains between the Copenhageni and Lai serovars were identified, offering an important starting point for the elucidation of the organism's complex polysaccharide surface antigens. Differences in adhesins and in lipopolysaccharide might be associated with the adaptation of serovars Copenhageni and Lai to different animal hosts. Hundreds of genes encoding surface-exposed lipoproteins and transmembrane outer membrane proteins were identified as candidates for development of vaccines for the prevention of leptospirosis.


Assuntos
Genoma Bacteriano , Genômica , Leptospira interrogans/fisiologia , Leptospira interrogans/patogenicidade , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Cricetinae , Humanos , Leptospira interrogans/classificação , Leptospira interrogans/genética , Leptospirose/microbiologia , Camundongos , Dados de Sequência Molecular , Análise de Sequência de DNA , Sorotipagem , Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...