Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Bioresour Technol ; : 131144, 2024 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-39043281

RESUMO

Conductive materials (CM) enhance methanogenesis, but there is no clear correlation between conductivity and faster methane production (MP) rates. We investigated if MP by pure cultures of methanogens (Methanobacterium formicicum, Methanospirillum hungatei, Methanothrix harundinacea and Methanosarcina barkeri) is affected by CM (activated carbon (AC), magnetite), and other sustainable alternatives (sand and glass beads, without conductivity, and zeolites (Zeo)). The significant impact of the materials was on M. formicicum as MP was significantly accelerated by non-CM (e.g., sand reduced the lag phase (LP) duration by 48 %), Zeo and AC (LP reduction in 71% and 75 %, respectively). Conductivity was not correlated with LP reduction. Instead, silicon content in the materials was inversely correlated with the time required for complete MP, and silicon per se stimulated M. formicicum's activity. These findings highlight the potential of using non-CM silicon-containing materials in anaerobic digesters to accelerate methanogenesis.

2.
Microb Ecol ; 87(1): 88, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38943017

RESUMO

Plastic pollution poses a worldwide environmental challenge, affecting wildlife and human health. Assessing the biodegradation capabilities of natural microbiomes in environments contaminated with microplastics is crucial for mitigating the effects of plastic pollution. In this work, we evaluated the potential of landfill leachate (LL) and estuarine sediments (ES) to biodegrade polyethylene (PE), polyethylene terephthalate (PET), and polycaprolactone (PCL), under aerobic, anaerobic, thermophilic, and mesophilic conditions. PCL underwent extensive aerobic biodegradation with LL (99 ± 7%) and ES (78 ± 3%) within 50-60 days. Under anaerobic conditions, LL degraded 87 ± 19% of PCL in 60 days, whereas ES showed minimal biodegradation (3 ± 0.3%). PE and PET showed no notable degradation. Metataxonomics results (16S rRNA sequencing) revealed the presence of highly abundant thermophilic microorganisms assigned to Coprothermobacter sp. (6.8% and 28% relative abundance in anaerobic and aerobic incubations, respectively). Coprothermobacter spp. contain genes encoding two enzymes, an esterase and a thermostable monoacylglycerol lipase, that can potentially catalyze PCL hydrolysis. These results suggest that Coprothermobacter sp. may be pivotal in landfill leachate microbiomes for thermophilic PCL biodegradation across varying conditions. The anaerobic microbial community was dominated by hydrogenotrophic methanogens assigned to Methanothermobacter sp. (21%), pointing at possible syntrophic interactions with Coprothermobacter sp. (a H2-producer) during PCL biodegradation. In the aerobic experiments, fungi dominated the eukaryotic microbial community (e.g., Exophiala (41%), Penicillium (17%), and Mucor (18%)), suggesting that aerobic PCL biodegradation by LL involves collaboration between fungi and bacteria. Our findings bring insights on the microbial communities and microbial interactions mediating plastic biodegradation, offering valuable perspectives for plastic pollution mitigation.


Assuntos
Bactérias , Biodegradação Ambiental , Microbiota , Microplásticos , Instalações de Eliminação de Resíduos , Microplásticos/metabolismo , Bactérias/classificação , Bactérias/metabolismo , Bactérias/genética , Bactérias/isolamento & purificação , Poluentes Químicos da Água/metabolismo , Poliésteres/metabolismo , Sedimentos Geológicos/microbiologia , RNA Ribossômico 16S/genética , Estuários , Polietileno/metabolismo , Polietilenotereftalatos/metabolismo
3.
ACS ES T Water ; 4(3): 784-804, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38482340

RESUMO

Wastewater treatment companies are facing several challenges related to the optimization of energy efficiency, meeting more restricted water quality standards, and resource recovery potential. Over the past decades, computational models have gained recognition as effective tools for addressing some of these challenges, contributing to the economic and operational efficiencies of wastewater treatment plants (WWTPs). To predict the performance of WWTPs, numerous deterministic, stochastic, and time series-based models have been developed. Mechanistic models, incorporating physical and empirical knowledge, are dominant as predictive models. However, these models represent a simplification of reality, resulting in model structure uncertainty and a constant need for calibration. With the increasing amount of available data, data-driven models are becoming more attractive. The implementation of predictive models can revolutionize the way companies manage WWTPs by permitting the development of digital twins for process simulation in (near) real-time. In data-driven models, the structure is not explicitly specified but is instead determined by searching for relationships in the available data. Thus, the main objective of the present review is to discuss the implementation of machine learning models for the prediction of WWTP effluent characteristics and wastewater inflows as well as anomaly detection studies and energy consumption optimization in WWTPs. Furthermore, an overview considering the merging of both mechanistic and machine learning models resulting in hybrid models is presented as a promising approach. A critical assessment of the main gaps and future directions on the implementation of mathematical modeling in wastewater treatment processes is also presented, focusing on topics such as the explainability of data-driven models and the use of Transfer Learning processes.

4.
Appl Microbiol Biotechnol ; 108(1): 192, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38305902

RESUMO

Micro-aeration was shown to improve anaerobic digestion (AD) processes, although oxygen is known to inhibit obligate anaerobes, such as syntrophic communities of bacteria and methanogens. The effect of micro-aeration on the activity and microbial interaction in syntrophic communities, as well as on the potential establishment of synergetic relationships with facultative anaerobic bacteria (FAB) or aerobic bacteria (AB), was investigated. Anaerobic sludge was incubated with ethanol and increasing oxygen concentrations (0-5% in the headspace). Assays with acetate or H2/CO2 (direct substrates for methanogens) were also performed. When compared with the controls (0% O2), oxygen significantly decreased substrate consumption and initial methane production rate (MPR) from acetate or H2/CO2. At 0.5% O2, MPR from these substrates was inhibited 30-40%, and close to 100% at 5% O2. With ethanol, significant inhibition (>36%) was only observed for oxygen concentrations higher than 2.5%. Oxygen was consumed in the assays, pointing to the stimulation of AB/FAB by ethanol, which helped to protect the syntrophic consortia under micro-aerobic conditions. This highlights the importance of AB/FAB in maintaining functional and resilient syntrophic communities, which is relevant for real AD systems (in which vestigial O2 amounts are frequently present), as well as for AD systems using micro-aeration as a process strategy. KEY POINTS: •Micro-aeration impacts syntrophic communities of bacteria and methanogens. •Oxygen stimulates AB/FAB, maintaining functional and resilient consortia. •Micro-aeration studies are critical for systems using micro-aeration as a process strategy.


Assuntos
Euryarchaeota , Esgotos , Anaerobiose , Esgotos/microbiologia , Reatores Biológicos , Dióxido de Carbono , Metano , Bactérias , Acetatos , Oxigênio , Etanol
5.
PLoS One ; 18(8): e0284717, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37535627

RESUMO

This study investigates the physiological response to heat stress of three genetically different Symbiodiniaceae strains isolated from the scleractinian coral Mussismilia braziliensis, endemic of the Abrolhos Bank, Brazil. Cultures of two Symbiodinium sp. and one Cladocopium sp. were exposed to a stepwise increase in temperature (2°C every second day) ranging from 26°C (modal temperature in Abrolhos) to 32°C (just above the maximum temperature registered in Abrolhos during the third global bleaching event-TGBE). After the cultures reached their final testing temperature, reactive oxygen species (ROS) production, single cell attributes (relative cell size and chlorophyll fluorescence), and photosynthetic efficiency (effective (Y(II)) and maximum (Fv/Fm) quantum yields) were measured within 4 h and 72 h. Non-photochemical coefficient (NPQ) was estimated based on fluorescence values. Population average ROS production was variable across strains and exposure times, reaching up a 2-fold increase at 32°C in one of the Symbiodinium sp. strains. A marked intrapopulation difference was observed in ROS production, with 5 to 25% of the cells producing up to 10 times more than the population average, highlighting the importance of single cell approaches to assess population physiology. Average cell size increases at higher temperatures, likely resulting from cell cycle arrest, whereas chlorophyll fluorescence decreased, especially in 4 h, indicating a photoacclimation response. The conditions tested do not seem to have elicited loss of photosynthetic efficiency nor the activation of non-photochemical mechanisms in the cells. Our results unveiled a generalized thermotolerance in three Symbiodiniaceae strains originated from Abrolhos' corals. Inter and intra-specific variability could be detected, likely reflecting the genetic differences among the strains.


Assuntos
Antozoários , Dinoflagellida , Animais , Espécies Reativas de Oxigênio/metabolismo , Fotossíntese/fisiologia , Antozoários/fisiologia , Resposta ao Choque Térmico , Temperatura Alta , Dinoflagellida/fisiologia , Clorofila/metabolismo , Simbiose/fisiologia , Estresse Fisiológico
6.
Gene ; 883: 147668, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37500024

RESUMO

Castor bean (Ricinus communis L.) can withstand long periods of water deficit and high temperatures, and therefore has been recognized as a drought-resistant plant species, allowing the study of gene networks involved in drought response and tolerance. The identification of genes networks related to drought response in this plant may yield important information in the characterization of molecular mechanisms correlating changes in the gene expression with the physiological adaptation processes. In this context, gene families related to abscisic acid (ABA) signaling play a crucial role in developmental and environmental adaptation processes of plants to drought stress. However, the families that function as the core components of ABA signaling, as well as genes networks related to drought response, are not well understood in castor bean. In this study 7 RcPYL, 63 RcPP2C, and 6 RcSnRK2 genes were identified in castor bean genome, which was further supported by chromosomal distribution, gene structure, evolutionary relationships, and conserved motif analyses. The castor bean general expression profile was investigated by RNAseq in root and leaf tissues in response to drought stress. These analyses allowed the identification of genes differentially expressed, including genes from the ABA signaling core, genes related to photosynthesis, cell wall, energy transduction, antioxidant response, and transcription factors. These analyses provide new insights into the core components of ABA signaling in castor bean, allow the identification of several molecular responses associated with the high physiological adaptation of castor bean to drought stress, and contribute to the identification of candidate genes for genetic improvement.


Assuntos
Ricinus communis , Ricinus communis/genética , Ricinus communis/metabolismo , Ricinus/genética , Ricinus/metabolismo , Redes Reguladoras de Genes , Secas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Transcriptoma , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ácido Abscísico/metabolismo
7.
Biomol NMR Assign ; 17(1): 143-149, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37145295

RESUMO

AtGRP2 (Arabidopsis thaliana glycine-rich protein 2) is a 19-kDa RNA-binding glycine-rich protein that regulates key processes in A. thaliana. AtGRP2 is a nucleo-cytoplasmic protein with preferential expression in developing tissues, such as meristems, carpels, anthers, and embryos. AtGRP2 knockdown leads to an early flowering phenotype. In addition, AtGRP2-silenced plants exhibit a reduced number of stamens and abnormal development of embryos and seeds, suggesting its involvement in plant development. AtGRP2 expression is highly induced by cold and abiotic stresses, such as high salinity. Moreover, AtGRP2 promotes double-stranded DNA/RNA denaturation, indicating its role as an RNA chaperone during cold acclimation. AtGRP2 is composed of an N-terminal cold shock domain (CSD) followed by a C-terminal flexible region containing two CCHC-type zinc fingers interspersed with glycine-rich sequences. Despite its functional relevance in flowering time regulation and cold adaptation, the molecular mechanisms employed by AtGRP2 are largely unknown. To date, there is no structural information regarding AtGRP2 in the literature. Here, we report the 1H, 15N, and 13C backbone and side chain resonance assignments, as well as the chemical shift-derived secondary structure propensities, of the N-terminal cold shock domain of AtGRP2, encompassing residues 1-90. These data provide a framework for AtGRP2-CSD three-dimensional structure, dynamics, and RNA binding specificity investigation, which will shed light on its mechanism of action.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Ligação a RNA , Proteínas de Arabidopsis/química , Resposta ao Choque Frio , Glicina/metabolismo , Ressonância Magnética Nuclear Biomolecular , RNA/metabolismo , Proteínas de Ligação a RNA/química
9.
Genet Mol Biol ; 46(1 Suppl 1): e20220153, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36512713

RESUMO

Ascorbate peroxidases (APXs) are heme peroxidases involved in the control of hydrogen peroxide levels and signal transduction pathways related to development and stress responses. Here, a total of 238 APX, 30 APX-related (APX-R), and 34 APX-like (APX-L) genes were identified from 24 species from the Poaceae family. Phylogenetic analysis of APX indicated five distinct clades, equivalent to cytosolic (cAPX), peroxisomal (pAPX), mitochondrial (mitAPX), stromal (sAPX), and thylakoidal (tAPX) isoforms. Duplication events contributed to the expansion of this family and the divergence times. Different from other APX isoforms, the emergence of Poaceae mitAPXs occurred independently after eudicot and monocot divergence. Our results showed that the constitutive silencing of mitAPX genes is not viable in rice plants, suggesting that these isoforms are essential for rice regeneration or development. We also obtained rice plants silenced individually to sAPX isoforms, demonstrating that, different to plants double silenced to both sAPX and tAPX or single silenced to tAPX previously obtained, these plants do not show changes in the total APX activity and hydrogen peroxide content in the shoot. Among rice plants silenced to different isoforms, plants silenced to cAPX showed a higher decrease in total APX activity and an increase in hydrogen peroxide levels. These results suggest that the cAPXs are the main isoforms responsible for regulating hydrogen peroxide levels in the cell, whereas in the chloroplast, this role is provided mainly by the tAPX isoform. In addition to broadening our understanding of the core components of the antioxidant defense in Poaceae species, the present study also provides a platform for their functional characterization.

10.
Microorganisms ; 10(11)2022 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-36363734

RESUMO

Waste and wastewater containing hydrocarbons are produced worldwide by various oil-based industries, whose activities also contribute to the occurrence of oil spills throughout the globe, causing severe environmental contamination. Anaerobic microorganisms with the ability to biodegrade petroleum hydrocarbons are important in the treatment of contaminated matrices, both in situ in deep subsurfaces, or ex situ in bioreactors. In the latter, part of the energetic value of these compounds can be recovered in the form of biogas. Anaerobic degradation of petroleum hydrocarbons can be improved by various iron compounds, but different iron species exert distinct effects. For example, Fe(III) can be used as an electron acceptor in microbial hydrocarbon degradation, zero-valent iron can donate electrons for enhanced methanogenesis, and conductive iron oxides may facilitate electron transfers in methanogenic processes. Iron compounds can also act as hydrocarbon adsorbents, or be involved in secondary abiotic reactions, overall promoting hydrocarbon biodegradation. These multiple roles of iron are comprehensively reviewed in this paper and linked to key functional microorganisms involved in these processes, to the underlying mechanisms, and to the main influential factors. Recent research progress, future perspectives, and remaining challenges on the application of iron-assisted anaerobic hydrocarbon degradation are highlighted.

11.
FEBS Lett ; 596(23): 2989-3004, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35776057

RESUMO

Ascorbate peroxidases (APXs) are heme peroxidases that remove hydrogen peroxide in different subcellular compartments with concomitant ascorbate cycling. Here, we analysed and discussed phylogenetic and molecular features of the APX family. Ancient APX originated as a soluble stromal enzyme, and early during plant evolution, acquired both chloroplast-targeting and mitochondrion-targeting sequences and an alternative splicing mechanism whereby it could be expressed as a soluble or thylakoid membrane-bound enzyme. Later, independent duplication and neofunctionalization events in some angiosperm groups resulted in individual genes encoding stromal, thylakoidal and mitochondrial isoforms. These data reaffirm the complexity of plant antioxidant defenses that allow diverse plant species to acquire new means to adapt to changing environmental conditions.


Assuntos
Peroxidases , Tilacoides , Ascorbato Peroxidases/genética , Ascorbato Peroxidases/metabolismo , Tilacoides/metabolismo , Filogenia , Peroxidases/genética , Peroxidases/metabolismo , Cloroplastos/metabolismo , Peróxido de Hidrogênio/metabolismo , Antioxidantes , Regulação da Expressão Gênica de Plantas
12.
Biochim Biophys Acta Bioenerg ; 1863(6): 148559, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35413247

RESUMO

Although mitochondria have a central role in energy transduction and reactive oxygen species (ROS) production, the regulatory mechanisms and their involvement in plant stress signaling are not fully established. The phytohormone salicylic acid (SA) is an important regulator of mitochondria-mediated ROS production and defense signaling. The role of SA and adenine nucleotides in the regulation of the mitochondrial succinate dehydrogenase (SDH) complex activity and ROS production was analyzed using WT, RNAi SDH1-1 and disrupted stress response 1 (dsr1) mutants, which show a point mutation in SDH1 subunit and are defective in SA signaling. Our results showed that SA and adenine nucleotides regulate SDH complex activity by distinct patterns, contributing to increased SDH-derived ROS production. As previously demonstrated, SA induces the succinate-quinone reductase activity of SDH complex, acting at or near the ubiquinone binding site. On the other hand, here we demonstrated that adenine nucleotides, such as AMP, ADP and ATP, induce the SDH activity provided by the SDH1 subunit. The regulation of SDH activity by adenine nucleotides is dependent on mitochondrial integrity and is prevented by atractyloside, an inhibitor of adenine nucleotide translocator (ANT), suggesting that the regulatory mechanism occurs on the mitochondrial matrix side of the inner mitochondrial membrane, and not in the intermembrane space, as previously suggested. On the other hand, in the intermembrane space, ADP and ATP limit mitochondrial oxygen consumption by a mechanism that appears to be related to cytochrome bc1 complex inhibition. Altogether, these results indicate that SA signaling and adenine nucleotides regulate the mitochondrial electron transport system and mitochondria-derived ROS production by direct effect in the electron transport system complexes, bringing new insights into mechanisms with direct implications in plant development and responses to different environmental responses, serving as a starting point for future physiological explorations.


Assuntos
Mitocôndrias , Ácido Salicílico , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Transporte de Elétrons , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ácido Salicílico/metabolismo , Ácido Salicílico/farmacologia
13.
Eng. sanit. ambient ; 27(1): 41-46, jan.-fev. 2022. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1364813

RESUMO

ABSTRACT Biomethane can readily replace fossil fuels including natural gas, which has similar physical and chemical properties. In Brazil, municipal solid waste is predominantly disposed of in landfills. Landfill gas is mostly employed for electricity generation, but still at low levels when compared to the existing potential. Production of biomethane from landfill gas may be an alternative to exploit the existing potential, but Brazil's pipeline network is rather limited and concentrated along the country's coast. In this context, the research sought to identify the locational viability of using landfill gas to produce biomethane and injecting it into pipelines, considering the available potential and its proximity to Brazil's existing pipeline network. The QGis software was used to integrate the information. Territorial arrangements with a biomethane production capacity of more than 15,000 Nm3 day−1 and located up to 50 km from the pipeline network were considered feasible. The research estimated a potential production equivalent to 3,407,027 Nm3 day−1 of biomethane from landfills in Brazil. This potential corresponds to 6% of country's natural gas consumption in 2019 and is almost 32 times greater than current production of biomethane from all substrates used with this purpose in that year. The results indicate the suitability of using geographic information systems to identify regions that can benefit from the production of biomethane from landfill gas using the existing natural gas pipelines as an alternative to the electricity generation and provides relevant subsidies to the formulation of more efficient public policies in both the sanitation and energy sectors.


RESUMO O biometano pode substituir facilmente os combustíveis fósseis, incluindo o gás natural, que possui propriedades físicas e químicas similares. No Brasil, os resíduos sólidos urbanos são descartados predominantemente em aterros sanitários. O gás dos aterros sanitários é empregado principalmente na geração de eletricidade, mas ainda em níveis baixos quando comparado ao potencial existente. A produção de biometano a partir do gás de aterro pode ser uma alternativa para explorar o potencial existente, mas a rede de gasodutos do Brasil é bastante limitada e concentrada ao longo da costa do país. Nesse contexto, esta pesquisa buscou identificar a viabilidade locacional do uso de gás de aterro sanitário para produzir biometano e injetá-lo em dutos, considerando o potencial disponível e sua proximidade com a rede de dutos existente no Brasil. O software QGis foi utilizado para integrar as informações. Foram considerados viáveis arranjos territoriais com uma capacidade de produção de biometano maior que 15.000 Nm3 dia−1 e localizados a até 50 km da rede de gasodutos. A pesquisa estimou uma produção potencial equivalente a 3.407.027 Nm3 dia−1 de biometano a partir de aterros sanitários no Brasil. Esse potencial corresponde a 6% do consumo de gás natural do país em 2019 e é quase 32 vezes maior que a produção de biometano de todos os substratos utilizados com essa finalidade naquele ano. Os resultados indicam a adequação do uso de sistemas de informação geográfica para identificar regiões que podem se beneficiar da produção de biometano a partir de gás de aterro sanitário, utilizando os gasodutos de gás natural existentes como alternativa à geração de eletricidade e fornece subsídios relevantes para a formulação de políticas públicas mais eficientes, tanto no setor de saneamento quanto no de energia.

14.
Biology (Basel) ; 12(1)2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36671712

RESUMO

Ascorbate peroxidase (APX), Monodehydroascorbate Reductase (MDAR), Dehydroascorbate Reductase (DHAR) and Glutathione Reductase (GR) enzymes participate in the ascorbate-glutathione cycle, which exerts a central role in the antioxidant metabolism in plants. Despite the importance of this antioxidant system in different signal transduction networks related to development and response to environmental stresses, the pathway has not yet been comprehensively characterized in many crop plants. Among different eudicotyledons, the Euphorbiaceae family is particularly diverse with some species highly tolerant to drought. Here the APX, MDAR, DHAR, and GR genes in Ricinus communis, Jatropha curcas, Manihot esculenta, and Hevea brasiliensis were identified and characterized. The comprehensive phylogenetic and genomic analyses allowed the classification of the genes into different classes, equivalent to cytosolic, peroxisomal, chloroplastic, and mitochondrial enzymes, and revealed the duplication events that contribute to the expansion of these families within plant genomes. Due to the high drought stress tolerance of Ricinus communis, the expression patterns of ascorbate-glutathione cycle genes in response to drought were also analyzed in leaves and roots, indicating a differential expression during the stress. Altogether, these data contributed to the characterization of the expression pattern and evolutionary analysis of these genes, filling the gap in the proposed functions of core components of the antioxidant mechanism during stress response in an economically relevant group of plants.

15.
Funct Integr Genomics ; 21(1): 73-99, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33404914

RESUMO

Lignin is the main component of secondary cell walls and is essential for plant development and defense. However, lignin is recognized as a major recalcitrant factor for efficiency of industrial biomass processing. Genes involved in general phenylpropanoid and monolignol-specific metabolism in sugarcane have been previously analyzed at the transcriptomic level. Nevertheless, the number of genes identified in this species is still very low. The recently released sugarcane genome sequence has allowed the genome-wide characterization of the 11 gene families involved in the monolignol biosynthesis branch of the phenylpropanoid pathway. After an exhaustive analysis of sugarcane genomes, 438 haplotypes derived from 175 candidate genes from Saccharum spontaneum and 144 from Saccharum hybrid R570 were identified as associated with this biosynthetic route. The phylogenetic analyses, combined with the search for protein conserved residues involved in the catalytic activity of the encoded enzymes, were employed to identify the family members potentially involved in developmental lignification. Accordingly, 15 candidates were identified as bona fide lignin biosynthesis genes: PTAL1, PAL2, C4H4, 4CL1, HCT1, HCT2, C3'H1, C3'H2, CCoAOMT1, COMT1, F5H1, CCR1, CCR2, CAD2, and CAD7. For this core set of lignin biosynthetic genes, we searched for the chromosomal location, the gene expression pattern, the promoter cis-acting elements, and microRNA targets. Altogether, our results present a comprehensive characterization of sugarcane general phenylpropanoid and monolignol-specific genes, providing the basis for further functional studies focusing on lignin biosynthesis manipulation and biotechnological strategies to improve sugarcane biomass utilization.


Assuntos
Genes de Plantas , Lignina/biossíntese , Saccharum/genética , Haplótipos , Lignina/genética , Fenilpropionatos/metabolismo , Filogenia , Polimorfismo Genético , Saccharum/classificação , Saccharum/metabolismo
16.
Ecotoxicology ; 29(7): 866-875, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32728874

RESUMO

Pharmaceutical compounds end up in wastewater treatment plants but little is known on their effect towards the different microbial groups in anaerobic communities. In this work, the effect of the antibiotic Ciprofloxacin (CIP), the non-steroidal anti-inflammatory drugs Diclofenac (DCF) and Ibuprofen (IBP), and the hormone 17α-ethinylestradiol (EE2), on the activity of acetogens and methanogens in anaerobic communities, was investigated. Microbial communities were more affected by CIP, followed by EE2, DCF and IBP, but the response of the different microbial groups was dissimilar. For concentrations of 0.01 to 0.1 mg/L, the specific methanogenic activity was not affected. Acetogenic bacteria were sensitive to CIP concentrations above 1 mg/L, while DCF and EE2 toxicity was only detected for concentrations higher than 10 mg/L, and IBP had no effect in all concentrations tested. Acetoclastic methanogens showed higher sensitivity to the presence of these micropollutants, being affect by all the tested pharmaceutical compounds although at different degrees. Hydrogenotrophic methanogens were not affected by any concentration, indicating their lower sensitivity to these compounds when compared to acetoclasts and acetogens.


Assuntos
Bactérias/metabolismo , Poluentes Químicos da Água/efeitos adversos , Anaerobiose , Bactérias/efeitos dos fármacos , Ciprofloxacina/efeitos adversos , Diclofenaco/efeitos adversos , Etinilestradiol/efeitos adversos , Ibuprofeno/efeitos adversos , Microbiota/efeitos dos fármacos , Águas Residuárias/microbiologia
17.
Mol Genet Genomics ; 295(3): 717-739, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32124034

RESUMO

The phenylpropanoid pathway is an important route of secondary metabolism involved in the synthesis of different phenolic compounds such as phenylpropenes, anthocyanins, stilbenoids, flavonoids, and monolignols. The flux toward monolignol biosynthesis through the phenylpropanoid pathway is controlled by specific genes from at least ten families. Lignin polymer is one of the major components of the plant cell wall and is mainly responsible for recalcitrance to saccharification in ethanol production from lignocellulosic biomass. Here, we identified and characterized sugarcane candidate genes from the general phenylpropanoid and monolignol-specific metabolism through a search of the sugarcane EST databases, phylogenetic analysis, a search for conserved amino acid residues important for enzymatic function, and analysis of expression patterns during culm development in two lignin-contrasting genotypes. Of these genes, 15 were cloned and, when available, their loci were identified using the recently released sugarcane genomes from Saccharum hybrid R570 and Saccharum spontaneum cultivars. Our analysis points out that ShPAL1, ShPAL2, ShC4H4, Sh4CL1, ShHCT1, ShC3H1, ShC3H2, ShCCoAOMT1, ShCOMT1, ShF5H1, ShCCR1, ShCAD2, and ShCAD7 are strong candidates to be bona fide lignin biosynthesis genes. Together, the results provide information about the candidate genes involved in monolignol biosynthesis in sugarcane and may provide useful information for further molecular genetic studies in sugarcane.


Assuntos
Vias Biossintéticas/genética , Lignina/biossíntese , Proteínas de Plantas/genética , Propanóis/metabolismo , Saccharum/genética , Saccharum/metabolismo , Regulação da Expressão Gênica de Plantas , Genótipo , Lignina/genética , Propanóis/química , Saccharum/classificação , Saccharum/crescimento & desenvolvimento
18.
Setúbal; s.n; 20190000. 88 p.
Tese em Português | BDENF - Enfermagem | ID: biblio-1373385

RESUMO

As doenças oncológicas constituem a segunda principal causa de morte em Portugal e têm um profundo impacto nos doentes, nos familiares e na sociedade em geral. O reconhecimento destes factos levou à elaboração do Plano Nacional de Prevenção e Controlo das Doenças Oncológicas (PNPCDO). O cancro do cólon e reto é o segundo tipo de neoplasia com maior incidência a nível nacional e o terceiro na região de Almada-Seixal. Este projeto de intervenção teve como objetivo geral promover a literacia sobre o cancro colon retal. O projeto, baseado na metodologia de planeamento em saúde, foi desenvolvido numa IPSS do concelho de Almada, tendo como população alvo os funcionários da institui-ção. O diagnóstico de situação a partir de dados epidemiológicos e da aplicação de um ques-tionário, possibilitou identificar o défice de conhecimentos da população alvo sobre esta ne-oplasia, tendo sido desenvolvidas ações de educação para a saúde que permitiram aumentar os conhecimentos sobre a patologia, o seu impacto e as medidas de prevenção, promovendo assim a literacia em saúde sobre o cancro colon retal.


Cancer diseases are the second leading cause of death in Portugal and have a profound im-pact on patients, families and society in general. Recognition of these facts led to the elabo-ration of the National Plan for the Prevention and Control of Oncological Diseases (PNPCDO). Colon and rectal cancer is the second most prevalent type of cancer nationwide and the third in the Almada-Seixal region. This intervention project aimed to promote literacy about rectal cancer. The project, based on the health planning methodology, was developed in an IPSS of the municipality of Al-mada, targeting the institution's employees. The diagnosis of the situation based on epide-miological data and the application of a questionnaire made it possible to identify the knowledge deficit of the target population about this neoplasm. Health education actions were developed to increase knowledge about the disease, its impact and prevention measures, thereby promoting health literacy on colon rectal cancer.


Assuntos
Neoplasias Colorretais , Promoção da Saúde
19.
Waste Manag ; 87: 782-790, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31109582

RESUMO

Municipal solid waste (MSW) management is a serious problem for public administrations, especially in terms of treatment and final disposal. These wastes have a high energy content and one of the possibilities of treatment is the recovery of energy through thermochemical processes. The parameter used to measure the amount of useful energy available in collected waste when submitted to thermochemical processes is called the lower heating value (LHV), which is usually determined in the laboratory or through empirical models from the literature. To this end, this paper aims to present two models for prediction of the LHV in the municipal solid waste of the municipality of Santo André. Samples were collected from 36 garbage trucks in the above-mentioned city, from September 2015 to January 2016. The models were developed based on the results of the gravimetric composition and laboratory analysis. The technique used to develop the models was the multiple linear regression by least squares method. As a result, the models obtained mean absolute percentage error (MAPE) indexes of 5.09% and 5.52%, considered excellent according to the literature classification. In addition, the calculated LHV of the Santo André municipal waste was 7.03 MJ/kg, which indicates a great potential for energy recovery using thermochemical processes. These are the first LHV prediction models developed in Brazil, which has been a significant accomplishment in Brazil. The proposed models were developed using empirical measurements of moisture in the solid waste and the LHV on samples collected with a statistically representative sampling method.


Assuntos
Eliminação de Resíduos , Resíduos Sólidos , Brasil , Cidades , Calefação , Modelos Estatísticos
20.
Mol Plant ; 11(12): 1449-1465, 2018 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-30296599

RESUMO

The bipartite begomoviruses (Geminiviridae family), which are DNA viruses that replicate in the nucleus of infected cells, encode the nuclear shuttle protein (NSP) to facilitate the translocation of viral DNA from the nucleus to the cytoplasm via nuclear pores. This intracellular trafficking of NSP-DNA complexes is accessorized by the NSP-interacting guanosine triphosphatase (NIG) at the cytosolic side. Here, we report the nuclear redistribution of NIG by AtWWP1, a WW domain-containing protein that forms immune nuclear bodies (NBs) against begomoviruses. We demonstrated that AtWWP1 relocates NIG from the cytoplasm to the nucleus where it is confined to AtWWP1-NBs, suggesting that the NIG-AtWWP1 interaction may interfere with the NIG pro-viral function associated with its cytosolic localization. Consistent with this assumption, loss of AtWWP1 function cuased plants more susceptible to begomovirus infection, whereas overexpression of AtWWP1 enhanced plant resistance to begomovirus. Furthermore, we found that a mutant version of AtWWP1 defective for NB formation was no longer capable of interacting with and relocating NIG to the nucleus and lost its immune function against begomovirus. The antiviral function of AtWWP1-NBs, however, could be antagonized by viral infection that induced either the disruption or a decrease in the number of AtWWP1-NBs. Collectively, these results led us to propose that AtWWP1 organizes nuclear structures into nuclear foci, which provide intrinsic immunity against begomovirus infection.


Assuntos
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Begomovirus/fisiologia , Núcleo Celular/metabolismo , Domínios WW , Arabidopsis/citologia , Arabidopsis/imunologia , Arabidopsis/metabolismo , Arabidopsis/virologia , Citosol/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Multimerização Proteica , Transporte Proteico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...