Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 284: 131335, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34328081

RESUMO

The processes controlling antibiotics fate in ecosystems are poorly understood, yet their presence can inhibit bacterial growth and induce the development of bacterial resistance. Sulfamethoxazole (SMX) is one of the most frequently detected sulfonamides in natural environments due to its low metabolism and molecular properties. This work presents pioneering results on SMX biodegradation and impact in high altitude soils (Bolivian Altiplano), allowing a better understanding of the persistence, spread and impact of this antibiotic at the global watershed scale. Our results showed significant dissipation of SMX in relation to its adsorption, hydrolysis and biotransformation. However, biodegradation appears to be lower in these mountain soils than in lowland soils as widely described in the literature. The half-life of SMX ranges from 12 to 346 days in non-sterile soils. In one soil, no biotic degradation was observed, indicating a likely high persistence. Biodegradation was related to OC content and to proximity to urban activities. Regarding the study of the impacts of SMX, the DGGE results were less sensitive than the sequencing. In general, SMX strongly changes the structure and composition of the studied soils at high altitudes, which is comparable to the observations of other authors in lowland soils. The phylum Actinobacter showed high sensitivity to SMX. In contrast, the abundance of ɣ-proteobacteria remained almost unchanged. Soil contamination with SMX did not lead to the development of the studied resistance genes (sul1 and sul2) in soils where they were absent at the beginning of the experiment. Thus, the presence of SMX resistance genes seems to be related to irrigation with wastewater carrying the studied resistance genes.


Assuntos
Microbiota , Sulfametoxazol , Altitude , Antibacterianos , Bolívia , Solo
2.
Environ Int ; 130: 104905, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31234002

RESUMO

Sulfamethoxazole (SMX) is one of the antibiotics most commonly detected in aquatic and terrestrial environments and is still widely used, especially in low income countries. SMX is assumed to be highly mobile in soils due to its intrinsic molecular properties. Ten soils with contrasting properties and representative of the catchment soil types and land uses were collected throughout the watershed, which undergoes very rapid urban development. SMX displacement experiments were carried out in repacked columns of the 10 soils to explore SMX reactive transfer (mobility and reactivity) in order to assess the contamination risk of water resources in the context of the Bolivian Altiplano. Relevant sorption processes were identified by modelling (HYDRUS-1D) considering different sorption concepts. SMX mobility was best simulated when considering irreversible sorption as well as instantaneous and rate-limited reversible sorption, depending on the soil type. SMX mobility appeared lower in soils located upstream of the watershed (organic and acidic soils - Regosol) in relation with a higher adsorption capacity compared to the soils located downstream (lower organic carbon content - Cambisol). By combining soil column experiments and soil profiles description, this study suggests that SMX can be classified as a moderately to highly mobile compound in the studied watershed, depending principally on soil properties such as pH and OC. Potential risks of surface and groundwater pollution by SMX were thus identified in the lower part of the studied catchment, threatening Lake Titicaca water quality.


Assuntos
Água Doce/química , Medição de Risco/métodos , Poluentes do Solo/análise , Sulfametoxazol/análise , Poluição da Água , Poluição da Água/análise , Poluição da Água/prevenção & controle , Recursos Hídricos
4.
Sci Rep ; 7(1): 10978, 2017 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-28887459

RESUMO

Bioaerosols represent up to 15-25% of PM by mass, but there is currently no assessment of their impact on Oxidative Potential (OP), or capacity of particulate matter (PM) to produce damaging oxidative reactions in the human lungs. Here, the OP of selected bioaerosols (bacteria cells vs fungal spores) was assessed through the cell-free DTT assay. Results show that bioaerosols induce Reactive Oxygen Species (ROS) production, varying along the microorganism type, species, and concentration. Fungal spores show up to 10 times more ROS generation than bacterial cells. At the highest concentrations, fungal spores present as much oxidative reactivity as the most redox-active airborne chemicals (Copper, Naphtoquinone). Moreover, bioaerosols substantially influence OP of ambient PM and that of its chemical constituents: in presence of A. fumigatus spores, the OP of Cu/NQ is increased by a factor of 2 to 5, whereas, 104 and 105 S. epidermidis bacterial cells.mL-1 halves the OP of Cu/NQ. Finally, viable and gamma-rays-killed model bioaerosols present similar oxidative reactivity, suggesting a metabolism-independent cellular mechanism. These results reveal the importance of bioaerosols for PM reactivity. PM toxicity can be modified due to bioaerosols contribution or by their ability to modulate the OP of toxic chemicals present in PM.

5.
Sci Total Environ ; 576: 671-682, 2017 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-27810754

RESUMO

An increasing number of studies pointed out the ubiquitous presence of medical residues in surface and ground water as well as in soil compartments. Not only antibiotics can be found in the environment but also their transformation products about which little information is generally available. The development of bacterial resistance to antibiotics is particularly worrying as it can lead to sanitary and health problems. Studies about the dissemination of antibiotics and associated resistances in the Bolivian Altiplano are scarce. We provide baseline information on the occurrence of Sulfamethoxazole (SMX) and Trimethoprim (TMP) antibiotics as well as on the most common human SMX transformation products (TP) and on the occurrence of sulfonamide resistance genes. The studied water and soil compartments presented high levels of antibiotic pollution. This situation was shown to be mainly linked with uncontrolled discharges of treated and untreated wastewaters, resulting on the presence of antibiotics in the Titicaca Lake. SMX TPs were detected in surface waters and on soil sampled next to the wastewater treatment plant (WWTP). SMX resistance genes sulI and sulII were widely detected in the basin hydrological network, even in areas unpolluted with antibiotics. Mechanisms of co-selection of antibiotic- and metal- resistance may be involved in the prevalence of ARG's in pristine areas with no anthropogenic activity and free of antibiotic pollution.


Assuntos
Antibacterianos/análise , Genes Bacterianos , Lagos/química , Poluentes Químicos da Água/análise , Bolívia , Farmacorresistência Bacteriana/genética , Sulfametoxazol/análise , Trimetoprima/análise , Águas Residuárias
6.
Biotechnol Bioeng ; 111(6): 1265-71, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24293082

RESUMO

The development of reliable models to accurately predict biofilm growth in porous media relies on a good knowledge of the temporal evolution of biofilms structure within the porous network. Since little is known on the true 3D structure of biofilms developed in porous media, this work aimed at developing a new experimental protocol to visualize the 3D microstructure of bacterial biofilms in porous media. The main originality of the proposed procedure lies on the combination of the more recent advances in synchrotron microtomography (Paganin mode) and of a new contrast agent (1-chloronaphtalene) that has never been applied to biofilm visualization. It is shown that the proposed methodology takes advantage of the contrasting properties of 1-chloronaphtalene to prevent some limitations observed with more classical contrast agents. A quantitative analysis of the microstructural properties (volume fractions and specific surface area) of bacterial biofilms developed in columns of clay beads is also proposed on the basis of the obtained 3D images.


Assuntos
Fenômenos Fisiológicos Bacterianos , Biofilmes/crescimento & desenvolvimento , Microbiologia Ambiental , Imageamento Tridimensional , Microtomografia por Raio-X/métodos , Meios de Contraste , Naftalenos
7.
Biomicrofluidics ; 7(5): 54105, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24404068

RESUMO

The objective of this work was to investigate the influence of hydrodynamics on the growth kinetics of surface-adhering Pseudomonas putida cells. The results showed in particular that under non substrate-limiting conditions, the early step of bacterial apparent growth rate is lower than those measured with suspended cells. Contrary to previously cited authors which explain this behavior to the different adhesive properties of the "daughter"-cells (which makes more probable the detachment of these daughter-cells), in our experimental conditions, that explanation does not hold and we show a clear dependence of growth kinetics with flow conditions, due to the formation of boundary layer concentration at low Reynolds number. These results revealed that using Monod law in the modeling of biofilm growth in fixed-biomass processes should be performed with care.

8.
J Environ Qual ; 37(5): 1929-36, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18689754

RESUMO

Soil sorption processes largely control the environmental fate of herbicides. Therefore, accuracy of sorption parameters is crucial for accurate prediction of herbicide mobility in agricultural soils. A combined experimental and statistical study was performed to investigate the small-scale spatial variability of sorption parameters for atrazine and dinoseb in soils and to establish the number of samples needed to provide a value of the distribution coefficient (K(d)) next to the mean, with a given precision. The study explored sorption properties of the two herbicides in subsurface samples collected from four pits distributed along a transect of an alluvial soil; two to four samples were taken at about 30 cm apart at each sampling location. When considering all the data, the distribution coefficients were found to be normally and log-normally distributed for atrazine and dinoseb, respectively; the CVs were relatively high (close to 50% for dinoseb and 40% for atrazine). When analyzed horizon by horizon, the data revealed distribution coefficients normally distributed for both herbicides, whatever the soil layer, with lower CVs. The K(d) values were shown to vary considerably between samples collected at very short distance (a few centimeters), suggesting that taking a single soil sample to determine sorption properties through batch experiments can lead to highly unrepresentative results and to poor sorption/mobility predictions.


Assuntos
2,4-Dinitrofenol/análogos & derivados , Atrazina/química , Herbicidas/química , Solo/análise , 2,4-Dinitrofenol/química , Adsorção , Cinética
9.
Environ Microbiol ; 10(3): 799-809, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18237312

RESUMO

In alpine ecosystems, tannin-rich-litter decomposition occurs mainly under snow. With global change, variations in snowfall might affect soil temperature and microbial diversity with biogeochemical consequences on ecosystem processes. However, the relationships linking soil temperature and tannin degradation with soil microorganisms and nutrients fluxes remain poorly understood. Here, we combined biogeochemical and molecular profiling approaches to monitor tannin degradation, nutrient cycling and microbial communities (Bacteria, Crenarcheotes, Fungi) in undisturbed winter time soil cores exposed to low temperature (0 degrees C/-6 degrees C), amended or not with tannins, extracted from Dryas octopetala. No toxic effect of tannins on microbial populations was found, indicating that they withstand phenolics from alpine vegetation litter. Additionally at -6 degrees C, higher carbon mineralization, higher protocatechuic acid concentration (intermediary metabolite of tannin catabolism), and changes in fungal phylogenetic composition showed that freezing temperatures may select fungi able to degrade D. octopetala's tannins. In contrast, negative net nitrogen mineralization rates were observed at -6 degrees C possibly due to a more efficient N immobilization by tannins than N production by microbial activities, and suggesting a decoupling between C and N mineralization. Our results confirmed tannins and soil temperatures as relevant controls of microbial catabolism which are crucial for alpine ecosystems functioning and carbon storage.


Assuntos
Biodiversidade , Ecossistema , Microbiologia do Solo , Solo/análise , Taninos/metabolismo , Bactérias/metabolismo , Carbono/metabolismo , Fungos/metabolismo , Fungos/fisiologia , Estações do Ano , Taninos/farmacologia
10.
Environ Sci Technol ; 40(6): 1806-13, 2006 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-16570601

RESUMO

The acid-base and Zn sorption properties of three bacteria, Cupriavidus metallidurans CH34, Pseudomonas putida ATCC12633, and Escherichia coli K12DH5alpha, were investigated through an original combination of extended X-ray absorption fine structure (EXAFS) spectroscopy and equilibrium titration studies. Acid-base titration curves of the three strains were fitted with a model accounting for three conceptual reactive sites: an acidic (carboxyl and/or phosphodiester), a neutral (phosphomonoester), and a basic (amine and/or hydroxyl) group. Calculated proton and Zn equilibrium constants and site densities compare with literature data. The nature of Zn binding sites was studied by EXAFS spectroscopy. Phosphoester, carboxyl, and unexpectedly sulfhydryl ligands were identified. Their proportions depended on Zn loading and bacterial strain and were consistent with the titration results. These findings were compared to the structure and site density of the major cell wall components. It appeared that the cumulated theoretical site density of these structures (<2 Zn nm(-2)) was much lower than the total site density of the investigated strains (16-56 Zn nm(-2)). These results suggest a dominant role of extracellular polymeric substances in Zn retention processes, although Zn binding to inner cell components cannot be excluded.


Assuntos
Bactérias Gram-Negativas/química , Zinco/química , Adsorção , Aminas/química , Burkholderiaceae/química , Ácidos Carboxílicos/química , Escherichia coli/química , Ésteres/química , Concentração de Íons de Hidrogênio , Ligantes , Modelos Químicos , Prótons , Pseudomonas putida/química , Espectrometria por Raios X/métodos , Compostos de Sulfidrila/química , Titulometria/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...