Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 27(23)2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36500237

RESUMO

Molecular docking, molecular dynamics (MD) simulations and the linear interaction energy (LIE) method were used here to predict binding modes and free energy for a set of 1,2,3-triazole-based KA analogs as potent inhibitors of Tyrosinase (TYR), a key metalloenzyme of the melanogenesis process. Initially, molecular docking calculations satisfactorily predicted the binding mode of evaluated KA analogs, where the KA part overlays the crystal conformation of the KA inhibitor into the catalytic site of TYR. The MD simulations were followed by the LIE method, which reproduced the experimental binding free energies for KA analogs with an r2 equal to 0.97, suggesting the robustness of our theoretical model. Moreover, the van der Waals contributions performed by some residues such as Phe197, Pro201, Arg209, Met215 and Val218 are responsible for the binding recognition of 1,2,3-triazole-based KA analogs in TYR catalytic site. Finally, our calculations provide suitable validation of the combination of molecular docking, MD, and LIE approaches as a powerful tool in the structure-based drug design of new and potent TYR inhibitors.


Assuntos
Simulação de Dinâmica Molecular , Triazóis , Simulação de Acoplamento Molecular , Triazóis/farmacologia , Pironas/farmacologia , Pironas/química , Monofenol Mono-Oxigenase , Ligação Proteica
2.
RSC Adv ; 13(1): 602-614, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36605626

RESUMO

Plasmepsins (Plms) are aspartic proteases involved in the degradation of human hemoglobin by P. falciparum and are essential for the survival and growth of the parasite. Therefore, Plm enzymes are reported as an important antimalarial drug target. Herein, we have applied molecular docking, molecular dynamics (MD) simulations, and binding free energy with the Linear Interaction Energy (LIE) approach to investigate the binding of peptidomimetic PlmIV inhibitors with a particular focus on understanding their selectivity against the human Asp protease cathepsin D (CatD). The residual decomposition analysis results suggest that amino acid differences in the subsite S3 of PlmIV and CatD are responsible for the higher selectivity of the 5a inhibitor. These findings yield excellent agreement with experimental binding data and provide new details regarding van der Waals and electrostatic interactions of subsite residues as well as structural properties of the PlmIV and CatD systems.

3.
Int J Mol Sci ; 21(13)2020 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-32640730

RESUMO

Tyrosinase (TYR) is a metalloenzyme classified as a type-3 copper protein, which is involved in the synthesis of melanin through a catalytic process beginning with the conversion of the amino acid l-Tyrosine (l-Tyr) to l-3,4-dihydroxyphenylalanine (l-DOPA). It plays an important role in the mechanism of melanogenesis in various organisms including mammals, plants, and fungi. Herein, we used a combination of computational molecular modeling techniques including molecular dynamic (MD) simulations and the linear interaction energy (LIE) model to evaluate the binding free energy of a set of analogs of kojic acid (KA) in complex with TYR. For the MD simulations, we used a dummy model including the description of the Jahn-Teller effect for Cu2+ ions in the active site of this enzyme. Our results show that the LIE model predicts the TYR binding affinities of the inhibitor in close agreement to experimental results. Overall, we demonstrate that the classical model provides a suitable description of the main interactions between analogs of KA and Cu2+ ions in the active site of TYR.


Assuntos
Bacillus megaterium/enzimologia , Cobre/química , Inibidores Enzimáticos/química , Monofenol Mono-Oxigenase/química , Pironas/química , Domínio Catalítico , Modelos Moleculares , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Monofenol Mono-Oxigenase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...