Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; : 107495, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38925327

RESUMO

Transthyretin (TTR) is a homotetrameric protein involved in the transport of thyroxine. More than 150 different mutations have been described in the TTR gene, several of them associated with familial amyloid cardiomyopathy (FAC). Recently, our group described a new variant of TTR in Brazil, namely A39D-TTR, which causes a severe cardiac condition. Position 39 is in the AB loop, a region of the protein that is located within the thyroxine-binding channels and is involved in tetramer formation. In the present study we solved the structure and characterize the thermodynamic stability of this new variant of TTR using urea and high hydrostatic pressure (HHP). Interestingly, during the process of purification, A39D-TTR turned out to be a dimer and not a tetramer, a variation that might be explained by the close contact of the four aspartic acids at position 39, where they face each other inside the thyroxine channel. In the presence of sub-denaturing concentrations of urea, bis-ANS binding and dynamic light scattering revealed A39D-TTR in the form of a molten-globule dimer. Co-expression of A39D and WT isoforms in the same bacterial cell did not produce heterodimers or heterotetramers, suggesting that somehow a negative charge at the AB loop precludes tetramer formation. A39D-TTR proved to be highly amyloidogenic, even at mildly acidic pH values where WT-TTR does not aggregate. Interestingly, despite being a dimer, aggregation of A39D-TTR was inhibited by diclofenac, which binds to the thyroxine channel in the tetramer, suggesting the existence of other pockets in A39D-TTR able to accommodate this molecule.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...