Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(19)2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37836741

RESUMO

Flavoring olive oils is a new trend in consumer preferences, and different enrichment techniques can be used. Coextraction of olives with a flavoring agent is an option for obtaining a flavored product without the need for further operations. Moreover, ultrasound (US) assisted extraction is an emergent technology able to increase extractability. Combining US and coextraction, it is possible to obtain new products using different types of olives (e.g., cultivar and ripening stage), ingredient(s) with the greatest flavoring and/or bioactive potential, as well as extraction conditions. In the present study, mastic thyme (Thymus mastichina L.) (TM) and lemon thyme (Thymus x citriodorus) (TC) were used for flavoring Cornicabra oils by coextraction. The coextraction trials were performed by (i) thyme addition to the olives during crushing or malaxation and (ii) US application before malaxation. Several parameters were evaluated in the oil: quality criteria parameters, total phenols, fatty acid composition, chlorophyll pigments, phenolic profile and oxidative stability. US application did not change the phenolic profile of Cornicabra olive oils, while the enrichment of olive oils with phenolic compounds or pigments by coextraction was very dependent on the thyme used. TM enrichment showed an improvement of several new phenolic compounds in the oils, while with TC, fewer new phenols were observed. In turn, in the trials with TC, the extraction of chlorophyll pigments was higher, particularly in crushing coprocessing. Moreover, the oils obtained with US and TM added in the mill or in the malaxator showed lower phenol decrease (59%) than oils flavored with TC (76% decrease) or Cornicabra virgin olive oil (80% decrease) over an 8-month storage period. Multivariate data analysis, considering quality parameters, pigments and phenolic contents, showed that flavored oils were mainly grouped by age.


Assuntos
Olea , Thymus (Planta) , Azeite de Oliva/análise , Aromatizantes/análise , Fenóis/análise , Clorofila , Óleos de Plantas
2.
Life (Basel) ; 11(10)2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34685419

RESUMO

Olive co-processing consists of the addition of ingredients either in the mill or in the malaxator. This technique allows selecting the type of olives, the ingredients with the greatest flavoring and bioactive potential, and the technological extraction conditions. A new product-a gourmet flavored oil-was developed by co-processing olives with Thymus mastichina L. The trials were performed using overripe fruits with low aroma potential (cv. 'Galega Vulgar'; ripening index 6.4). Experimental conditions were dictated by a central composite rotatable design (CCRD) as a function of thyme (0.4-4.6%, w/w) and water (8.3-19.7%, w/w) contents used in malaxation. A flavored oil was also obtained by adding 2.5% thyme during milling, followed by 14% water addition in the malaxator (central point conditions of CCRD). The chemical characterization of the raw materials, as well as the analysis of the flavored and unflavored oils, were performed (chemical quality criteria, sensory analysis, major fatty acid composition, and phenolic compounds). Considering chemical quality criteria, the flavored oils have the characteristics of "Virgin Olive Oil" (VOO), but they cannot have this classification due to legislation issues. Flavored oils obtained under optimized co-processing conditions (thyme concentrations > 3.5-4.0% and water contents varying from 14 to 18%) presented higher phenolic contents and biologic value than the non-flavored VOO. In flavored oils, thyme flavor was detected with high intensity, while the defect of "wet wood", perceived in VOO, was not detected. The flavored oil, obtained by T. mastichina addition in the mill, showed higher oxidative stability (19.03 h) than the VOO and the co-processed oil with thyme addition in the malaxator (14.07 h), even after six-month storage in the dark (16.6 vs. 10.3 h).

3.
Plants (Basel) ; 10(6)2021 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-34204080

RESUMO

Contaminants of environmental concern, like pharmaceuticals, are being detected in increasing amounts in soils and irrigation waters and can thus be taken up by plants. In this work, the uptake of acetaminophen (ACT) by lettuce plants was evaluated through a hydroponic experiment at different concentrations (0, 0.1, 1 and 5 mg L-1 ACT). The pathways related to oxidative stress induced by ACT were studied in lettuce leaves and roots at 1, 8 and 15 days after exposure. Stress indicators such as hydrogen peroxide and malondialdehyde (MDA) contents were analyzed, revealing increases in plants contaminated with ACT in comparison to control, confirming the occurrence of oxidative stress, with the exception of MDA in leaves. The enzymatic activities of catalase, superoxide dismutase, guaiacol peroxidase, ascorbate peroxidase and glutathione peroxidase, directly involved in the antioxidative system, showed significant differences when compared to control plants, and, depending on the enzyme and the tissue, different trends were observed. Glutathione reductase revealed a decrease in contaminated leaves, which may imply a specific impact of ACT in the glutathione cycle. Significant increases were found in the anthocyanin content of leaves, both with exposure time and ACT concentration, indicating an antioxidative response induced by ACT contamination.

4.
J Proteomics ; 245: 104291, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34089899

RESUMO

Pharmaceutical compounds have been found in rivers and treated wastewaters. They often contaminate irrigation waters and consequently accumulate in edible vegetables, causing changes in plants metabolism. The main objective of this work is to understand how lettuce plants cope with the contamination from three selected pharmaceuticals using a label free proteomic analysis. A lettuce hydroponic culture, grown for 36 days, was exposed to metformin, acetaminophen and carbamazepine (at 1 mg/L), during 8 days, after which roots and leaves were sampled and analysed using a liquid chromatography-mass spectrometry proteomics-based approach. In roots, a total of 612 proteins showed differentially accumulation while in leaves 237 proteins were identified with significant differences over controls. Carbamazepine was the contaminant that most affected protein abundance in roots, while in leaves the highest number of differentially accumulated proteins was observed for acetaminophen. In roots under carbamazepine, stress related protein species such as catalase, superoxide dismutase and peroxidases presented higher abundance. Ascorbate peroxidase increased in roots under metformin. Cell respiration protein species were affected by the presence of the three pharmaceuticals suggesting possible dysregulation of the Krebs cycle. Acetaminophen caused the main differences in respiration pathways, with more emphasis in leaves. Lettuce plants revealed different tolerance levels when contaminants were compared, being more tolerant to metformin presence and less tolerant to carbamazepine. SIGNIFICANCE: The significant increase of emerging contaminants in ecosystems makes essential to understand how these compounds may affect the metabolism of different organisms. Our study contributes with a detailed approach of the main interactions that may occur in plant metabolism when subjected to the stress induced by three different pharmaceuticals (acetaminophen, carbamazepine and metformin).


Assuntos
Lactuca , Preparações Farmacêuticas , Catalase , Ecossistema , Folhas de Planta , Raízes de Plantas , Proteômica
5.
Crit Rev Food Sci Nutr ; 57(14): 3104-3126, 2017 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-26466636

RESUMO

This work aims at presenting the state-of-the-art about the influence of the activity of olive endogenous enzymes, as well as of the application of adjuvants in olive oil technology, discussing their influence on the composition of virgin olive oil, especially in phenols and volatile compounds.


Assuntos
Manipulação de Alimentos/métodos , Azeite de Oliva/química , Fenóis/análise , Humanos , Olea , Azeite de Oliva/metabolismo , Óleos de Plantas/química , Volatilização
6.
Food Chem ; 211: 51-8, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27283606

RESUMO

In this study, the lipophilic and hydrophilic phenol composition of virgin olive oils (VOO) obtained from olives from two of the most important Portuguese cultivars ('Galega Vulgar' and 'Cobrançosa'), harvested at different ripening stages and under two irrigation schemes (rain fed and irrigated), was evaluated. Phenolic alcohols (hydroxytyrosol and tyrosol), phenolic acids and derivatives and flavonoids (luteolin and apigenin), as well as tocopherols were quantified. Lipophilic (>300mgkg(-1)) and hydrophilic phenols (>600mgkg(-1)) were present in high contents in both VOO, for early ripening stages. Gamma-tocopherol content is higher in 'Galega Vulgar' VOO. Total phenols showed a decrease between ripening index 2.5 and 3.5. The dialdehydic form of elenolic acid linked to hydroxytyrosol (3,4-DHPEA-EDA), also known as oleacein, was the major phenolic compound identified in both oils. The concentration of free hydroxytyrosol and tyrosol in both VOO is very low while their esterified derivatives, like 3,4-DHPEA-EDA and p-HPEA-EDA, are much more abundant.


Assuntos
Azeite de Oliva/química , Óleos de Plantas/química , Hidroxibenzoatos , Tocoferóis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...