Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Cell Environ ; 2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38644584

RESUMO

The stems of some herbaceous species can undergo basal secondary growth, leading to a continuum in the degree of woodiness along the stem. Whether the formation of secondary growth in the stem base results in differences in embolism resistance between the base and the upper portions of stems is unknown. We assessed the embolism resistance of leaves and the basal and upper portions of stems simultaneously within the same individuals of two divergent herbaceous species that undergo secondary growth in the mature stem bases. The species were Solanum lycopersicum (tomato) and Senecio minimus (fireweed). Basal stem in mature plants of both species displayed advanced secondary growth and greater resistance to embolism than the upper stem. This also resulted in significant vulnerability segmentation between the basal stem and the leaves in both species. Greater embolism resistance in the woodier stem base was found alongside decreases in the pith-to-xylem ratio, increases in the proportion of secondary xylem, and increases in lignin content. We show that there can be considerable variation in embolism resistance across the stem in herbs and that this variation is linked to the degree of secondary growth present. A gradient in embolism resistance across the stem in herbaceous plants could be an adaptation to ensure reproduction or basal resprouting during episodes of drought late in the lifecycle.

2.
J Plant Physiol ; 293: 154170, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38271894

RESUMO

Although significant efforts to produce carotenoid-enriched foods either by biotechnology or traditional breeding strategies have been carried out, our understanding of how changes in the carotenoid biosynthesis might affect overall plant performance remains limited. Here, we investigate how the metabolic machinery of well characterized tomato carotenoid mutant plants [namely crimson (old gold-og), Delta carotene (Del) and tangerine (t)] adjusts itself to varying carotenoid biosynthesis and whether these adjustments are supported by a reprogramming of photosynthetic and central metabolism in the source organs (leaves). We observed that mutations og, Del and t did not greatly affect vegetative growth, leaf anatomy and gas exchange parameters. However, an exquisite metabolic reprogramming was recorded on the leaves, with an increase in levels of amino acids and reduction of organic acids. Taken together, our results show that despite minor impacts on growth and gas exchange, carbon flux is extensively affected, leading to adjustments in tomato leaves metabolism to support changes in carotenoid biosynthesis on fruits (sinks). We discuss these data in the context of our current understanding of metabolic adjustments and carotenoid biosynthesis as well as regarding to improving human nutrition.


Assuntos
Solanum lycopersicum , Humanos , Solanum lycopersicum/genética , Frutas/metabolismo , Reprogramação Metabólica , Carotenoides/metabolismo , Plantas/metabolismo , Folhas de Planta/metabolismo , Regulação da Expressão Gênica de Plantas
3.
Plant Physiol Biochem ; 204: 108145, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37907041

RESUMO

We recently demonstrated that, under elevated [CO2] (eCa), coffee (Coffea arabica L.) plants grown at high light (HL), but not at low light (LL), display higher stomatal conductance (gs) than at ambient [CO2] (aCa). We then hypothesized that the enhanced gs at eCa/HL, if sustained at the long-term, would lead to adjustments in hydraulic architecture. To test this hypothesis, potted plants of coffee were grown in open-top chambers for 12 months under HL or LL (ca. 9 or 1 mol photons m-2 day-1, respectively); these light treatments were combined with two [CO2] levels (ca. 437 or 705 µmol mol-1, respectively). Under eCa/HL, increased gs was closely accompanied by increases in branch and leaf hydraulic conductances, suggesting a coordinated response between liquid- and vapor-phase water flows throughout the plant. Still under HL, eCa also resulted in increased Huber value (sapwood area-to-total leaf area), sapwood area-to-stem diameter, and root mass-to-total leaf area, thus further improving the water supply to the leaves. Our results demonstrate that Ca is a central player in coffee physiology increasing carbon gain through a close association between stomatal function and an improved hydraulic architecture under HL conditions.


Assuntos
Coffea , Estômatos de Plantas , Estômatos de Plantas/fisiologia , Fotossíntese/fisiologia , Dióxido de Carbono , Café , Coffea/fisiologia , Folhas de Planta/fisiologia , Água/fisiologia
4.
Plant Cell Environ ; 46(11): 3229-3241, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37526514

RESUMO

Drought resistance is essential for plant production under water-limiting environments. Abscisic acid (ABA) plays a critical role in stomata but its impact on hydraulic function beyond the stomata is far less studied. We selected genotypes differing in their ability to accumulate ABA to investigate its role in drought-induced dysfunction. All genotypes exhibited similar leaf and stem embolism resistance regardless of differences in ABA levels. Their leaf hydraulic resistance was also similar. Differences were only observed between the two extreme genotypes: sitiens (sit; a strong ABA-deficient mutant) and sp12 (a transgenic line that constitutively overaccumulates ABA), where the water potential inducing 50% embolism was 0.25 MPa lower in sp12 than in sit. Maximum stomatal and minimum leaf conductances were considerably lower in plants with higher ABA (wild type [WT] and sp12) than in ABA-deficient mutants. Variations in gas exchange across genotypes were associated with ABA levels and differences in stomatal density and size. The lower water loss in plants with higher ABA meant that lethal water potentials associated with embolism occurred later during drought in sp12 plants, followed by WT, and then by the ABA-deficient mutants. Therefore, the primary pathway by which ABA enhances drought resistance is via declines in water loss, which delays dehydration and hydraulic dysfunction.

5.
Plants (Basel) ; 12(7)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37050105

RESUMO

Coffee (Coffea arabica L.) plants have been assorted as highly suitable to growth at elevated [CO2] (eCa), although such suitability is hypothesized to decrease under severe shade. We herein examined how the combination of eCa and contrasting irradiance affects growth and photosynthetic performance. Coffee plants were grown in open-top chambers under relatively high light (HL) or low light (LL) (9 or 1 mol photons m-2 day-1, respectively), and aCa or eCa (437 or 705 µmol mol-1, respectively). Most traits were affected by light and CO2, and by their interaction. Relative to aCa, our main findings were (i) a greater stomatal conductance (gs) (only at HL) with decreased diffusive limitations to photosynthesis, (ii) greater gs during HL-to-LL transitions, whereas gs was unresponsive to the LL-to-HL transitions irrespective of [CO2], (iii) greater leaf nitrogen pools (only at HL) and higher photosynthetic nitrogen-use efficiency irrespective of light, (iv) lack of photosynthetic acclimation, and (v) greater biomass partitioning to roots and earlier branching. In summary, eCa improved plant growth and photosynthetic performance. Our novel and timely findings suggest that coffee plants are highly suited for a changing climate characterized by a progressive elevation of [CO2], especially if the light is nonlimiting.

6.
Plant Cell Rep ; 41(9): 1907-1929, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35833988

RESUMO

KEY MESSAGE: High pigment mutants in tomato (Solanum lycopersicum L.), a loss of function in the control of photomorphogenesis, with greater pigment production, show altered growth, greater photosynthesis, and a metabolic reprogramming. High pigment mutations cause plants to be extremely responsive to light and produce excessive pigmentation as well as fruits with high levels of health-beneficial nutrients. However, the association of these traits with changes in the physiology and metabolism of leaves remains poorly understood. Here, we performed a detailed morphophysiological and metabolic characterization of high pigment 1 (hp1) and high pigment 2 (hp2) mutants in tomato (Solanum lycopersicum L. 'Micro-Tom') plants under different sunlight conditions (natural light, 50% shading, and 80% shading). These mutants occur in the DDB1 (hp1) and DET1 (hp2) genes, which are related to the regulation of photomorphogenesis and chloroplast development. Our results demonstrate that these mutations delay plant growth and height, by affecting physiological and metabolic parameters at all stages of plant development. Although the mutants were characterized by higher net CO2 assimilation, lower stomatal limitation, and higher carboxylation rates, with anatomical changes that favour photosynthesis, we found that carbohydrate levels did not increase, indicating a change in the energy flow. Shading minimized the differences between mutants and the wild type or fully reversed them in the phenotype at the metabolic level. Our results indicate that the high levels of pigments in hp1 and hp2 mutants represent an additional energy cost for these plants and that extensive physiological and metabolic reprogramming occurs to support increased pigment biosynthesis.


Assuntos
Solanum lycopersicum , Carbono/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Solanum lycopersicum/metabolismo , Fotossíntese/genética , Pigmentação/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Plantas/metabolismo
7.
Tree Physiol ; 42(9): 1750-1761, 2022 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-35388901

RESUMO

Ongoing changes in climate, and the consequent mortality of natural and cultivated forests across the globe, highlight the urgent need to understand the plant traits associated with greater tolerance to drought. Here, we aimed at assessing key foliar traits, with a focus on the hydraulic component, that could confer a differential ability to tolerate drought in three commercial hybrids of the most important Eucalyptus species utilized in tropical silviculture: E. urophyla, E. grandis and E. camaldulensis. All genotypes exhibited similar water potential when the 90% stomatal closure (Ψgs90) occurs with Ψgs90 always preceding the start of embolism events. The drought-tolerant hybrid showed a higher leaf resistance to embolism, but the leaf hydraulic efficiency was similar among all genotypes. Other traits presented by the drought-tolerant hybrid were a higher cell wall reinforcement, lower value of osmotic potential at full turgor and greater bulk modulus of elasticity. We also identified that the leaf capacitance after the turgor loss, the ratio between cell wall thickness (t) and lumen breadth (b) ratio (t/b)3, and the minimal conductance might be good proxies for screening drought-tolerant Eucalyptus genotypes. Our findings suggest that xylem resistance to embolism can be an important component of drought tolerance in Eucalyptus in addition to other traits aimed at delaying the development of high tensions in the xylem. Highlight Drought tolerance in tropical Eucalyptus hybrids encompasses a high leaf resistance to embolism and a suite of traits aimed at delaying the development of high tensions in the xylem.


Assuntos
Eucalyptus , Células Clonais , Secas , Eucalyptus/genética , Folhas de Planta , Água , Xilema
8.
J Exp Bot ; 73(12): 4147-4156, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35312771

RESUMO

Auxins are known to regulate xylem development in plants, but their effects on water transport efficiency are poorly known. Here we used tomato plants with the diageotropica mutation (dgt), which has impaired function of a cyclophilin 1 cis-trans isomerase involved in auxin signaling, and the corresponding wild type (WT) to explore the mutation's effects on plant hydraulics and leaf gas exchange. The xylem of the dgt mutant showed a reduced hydraulically weighted vessel diameter (Dh) (24-43%) and conduit number (25-58%) in petioles and stems, resulting in lower theoretical hydraulic conductivities (Kt); on the other hand, no changes in root Dh and Kt were observed. The measured stem and leaf hydraulic conductances of the dgt mutant were lower (up to 81%), in agreement with the Kt values; however, despite dgt and WT plants showing similar root Dh and Kt, the measured root hydraulic conductance of the dgt mutant was 75% lower. The dgt mutation increased the vein and stomatal density, which could potentially increase photosynthesis. Nevertheless, even though it had the same photosynthetic capacity as WT plants, the dgt mutant showed a photosynthetic rate c. 25% lower, coupled with a stomatal conductance reduction of 52%. These results clearly demonstrate that increases in minor vein and stomatal density only result in higher leaf gas exchange when accompanied by higher hydraulic efficiency.


Assuntos
Fotossíntese , Água , Ácidos Indolacéticos , Folhas de Planta/fisiologia , Água/fisiologia , Xilema/fisiologia
9.
J Plant Physiol ; 260: 153413, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33848796

RESUMO

Trichomes are epidermal structures with a large variety of ecological functions and economic applications. Glandular trichomes produce a rich repertoire of secondary metabolites, whereas non-glandular trichomes create a physical barrier on the epidermis: both operate in tandem against biotic and abiotic stressors. A deeper understanding of trichome development and function would enable the breeding of more resilient crops. However, little is known about the impact of altered trichome density on leaf photosynthesis, gas exchange and energy balance. Previous work has compared multiple, closely related species differing in trichome density. Here, we analysed monogenic trichome mutants in the same tomato genetic background (Solanum lycopersicum cv. 'Micro-Tom'). We determined growth parameters, leaf spectral properties, gas exchange and leaf temperature in the hairs absent (h), Lanata (Ln) and Woolly (Wo) trichome mutants. Shoot dry weight, leaf area, leaf spectral properties and cuticular conductance were not affected by the mutations. However, the Ln mutant showed increased net carbon assimilation rate (An), associated with higher stomatal conductance (gs), with no differences in stomatal density or stomatal index between genotypes. Leaf temperature was furthermore reduced in Ln in the hottest, early hours of the afternoon. We show that a single monogenic mutation that modifies trichome density, a desirable trait for crop breeding, concomitantly improves leaf gas exchange and reduces leaf temperature.


Assuntos
Melhoramento Vegetal , Folhas de Planta/fisiologia , Estômatos de Plantas/fisiologia , Solanum lycopersicum/fisiologia , Solanum lycopersicum/genética , Mutação , Folhas de Planta/genética , Estômatos de Plantas/genética , Temperatura , Tricomas/genética , Tricomas/fisiologia
10.
Tree Physiol ; 41(1): 35-49, 2021 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-32879972

RESUMO

The overall coordination between gas exchanges and plant hydraulics may be affected by soil water availability and source-to-sink relationships. Here we evaluated how branch growth and mortality, leaf gas exchange and metabolism are affected in coffee (Coffea arabica L.) trees by drought and fruiting. Field-grown plants were irrigated or not, and maintained with full or no fruit load. Under mild water deficit, irrigation per se did not significantly impact growth but markedly reduced branch mortality in fruiting trees, despite similar leaf assimilate pools and water status. Fruiting increased net photosynthetic rate in parallel with an enhanced stomatal conductance, particularly in irrigated plants. Mesophyll conductance and maximum RuBisCO carboxylation rate remained unchanged across treatments. The increased stomatal conductance in fruiting trees over nonfruiting ones was unrelated to internal CO2 concentration, foliar abscisic acid (ABA) levels or differential ABA sensitivity. However, stomatal conductance was associated with higher stomatal density, lower stomatal sensitivity to vapor pressure deficit, and higher leaf hydraulic conductance and capacitance. Increased leaf transpiration rate in fruiting trees was supported by coordinated alterations in plant hydraulics, which explained the maintenance of plant water status. Finally, by preventing branch mortality, irrigation can mitigate biennial production fluctuations and improve the sustainability of coffee plantations.


Assuntos
Coffea , Árvores , Café , Fotossíntese , Folhas de Planta , Transpiração Vegetal , Água
11.
Plant Physiol Biochem ; 158: 524-535, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33293205

RESUMO

Despite being evolved in shaded environments, most coffee (Coffea arabica L.) is cultivated worldwide under sparse shade or at full sunlight. Coffee is ranked as greatly responsive to climate change (CC), and shading has been considered an important management strategy for mitigating the harmful CC outcomes on the crop. However, there is no information on the effects of enhanced [CO2] (eCa) on coffee performance in response to light availability. Here, we examined how carbon assimilation and use are affected by eCa in combination with contrasting light levels. For that, greenhouse-grown plants were submitted to varying light levels (16 or 7.5 mol photons m-2 day-1) and [CO2] (ca. 380 or 740 µmol mol-1 air) over six months. We demonstrated that both high light and eCa improved growth and photosynthetic performance, independently. Despite marginal alterations in biomass partitioning, some allometric changes, such as higher root biomass-to-total leaf area and lower leaf area ratio under the combination of eCa and high light were found. Stimulation of photosynthetic rates by eCa occurred with no direct effect on stomatal and mesophyll conductances, and no signs of photosynthetic down-regulation were found irrespective of treatments. Particularly at high light, eCa led to decreases in both photorespiration rates and oxidative pressure. Overall, our novel findings suggest that eCa could tandemly act with shading to mitigate the harmful CC effects on coffee sustainability.


Assuntos
Dióxido de Carbono/química , Coffea/crescimento & desenvolvimento , Fotossíntese , Luz , Folhas de Planta
12.
Ecotoxicol Environ Saf ; 189: 110008, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31796254

RESUMO

Excess iron (Fe) is commonly observed in wetland rice (Oryza sativa L.) plants, impairing crop growth and productivity. Some information suggests that silicon (Si) can reduce Fe content in leaves and roots of rice (vegetative phase), but nothing is known if Si could mitigate the effects of Fe toxicity on rice production and photosynthesis. Here, we assessed the role of Si in alleviating the well-known effects of Fe toxicity on nutritional imbalances, biomass accumulation, photosynthesis and grain yield using two rice cultivars having differential abilities to tolerate excess Fe. Plants were hydroponically grown under two Fe levels (25 µM or 5 mM) and the nutrient solutions were amended with Si (0 or 2 mM). Under excess Fe were detected (i) nutritional deficiencies, especially of calcium and magnesium in leaves; (ii) negligible changes in grain nutritional composition, independently of Si application; (iii) decreases in net photosynthetic rates, stomatal conductance and electron transport rate, in parallel to decreased grain yield components (total grain biomass, 1000-grain mass, percentage of filled grains, number of grains per plant and harvest index), especially in the Fe-sensitive cultivar. These impairments were partially reversed by the application of Si. Results also suggest that Si alleviated the negative impacts of Fe on spikelet sterility. In summary, we conclude that the use of Si can be recommended as an effective management strategy to reduce the negative impacts of Fe toxicity on rice photosynthetic performance and crop yield.


Assuntos
Grão Comestível/efeitos dos fármacos , Ferro/toxicidade , Oryza/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Silício/farmacologia , Grão Comestível/crescimento & desenvolvimento , Grão Comestível/metabolismo , Transporte de Elétrons/efeitos dos fármacos , Hidroponia , Ferro/metabolismo , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/toxicidade
13.
Plant Physiol Biochem ; 143: 275-285, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31536896

RESUMO

Iron (Fe) toxicity is often observed in lowland rice (Oryza sativa L.) plants, disrupting cell homeostasis and impairing growth and crop yields. Silicon (Si) can mitigate the effects of Fe excess on rice by decreasing tissue Fe concentrations, but no information exists whether Si could prevent the harmful effects of Fe toxicity on the photosynthesis and carbon metabolism. Two rice cultivars with contrasting abilities to tolerate Fe excess were hydroponically grown under two Fe levels (25 µM or 5 mM) and amended or not with Si (0 or 2 mM). Fe toxicity caused decreases in net photosynthetic rate (A), particularly in the sensitive cultivar. These decreases were correlated with reductions in stomatal (gs) and mesophyll (gm) conductances, as well as with increasing photorespiration. Photochemical (e.g. electron transport rate) and biochemical (e.g., maximum RuBisCO carboxylation capacity and RuBisCO activity) parameters of photosynthesis, and activities of a range of carbon metabolism enzymes, were minimally, if at all, affected by the treatments. Si attenuated the decreases in A by presumably reducing the Fe content. In fact, A as well as gs and gm, correlated significantly with leaf Fe contents. In summary, our data suggest a remarkable metabolic homeostasis under Fe toxicity, and that Si attenuated the impairments of Fe excess on the photosynthetic apparatus by affecting the leaf diffusive conductance with minimal impacts on carbon metabolism.


Assuntos
Carbono/metabolismo , Ferro/toxicidade , Oryza/metabolismo , Silício/farmacologia , Regulação da Expressão Gênica de Plantas , Oryza/efeitos dos fármacos , Oryza/fisiologia , Fotossíntese/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia
14.
Plant Cell Environ ; 42(5): 1575-1589, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30523629

RESUMO

Coordination between structural and physiological traits is key to plants' responses to environmental fluctuations. In heterobaric leaves, bundle sheath extensions (BSEs) increase photosynthetic performance (light-saturated rates of photosynthesis, Amax ) and water transport capacity (leaf hydraulic conductance, Kleaf ). However, it is not clear how BSEs affect these and other leaf developmental and physiological parameters in response to environmental conditions. The obscuravenosa (obv) mutation, found in many commercial tomato varieties, leads to absence of BSEs. We examined structural and physiological traits of tomato heterobaric and homobaric (obv) near-isogenic lines grown at two different irradiance levels. Kleaf , minor vein density, and stomatal pore area index decreased with shading in heterobaric but not in homobaric leaves, which show similarly lower values in both conditions. Homobaric plants, on the other hand, showed increased Amax , leaf intercellular air spaces, and mesophyll surface area exposed to intercellular airspace (Smes ) in comparison with heterobaric plants when both were grown in the shade. BSEs further affected carbon isotope discrimination, a proxy for long-term water-use efficiency. BSEs confer plasticity in traits related to leaf structure and function in response to irradiance levels and might act as a hub integrating leaf structure, photosynthetic function, and water supply and demand.


Assuntos
Folhas de Planta , Feixe Vascular de Plantas/citologia , Feixe Vascular de Plantas/fisiologia , Luz , Solanum lycopersicum , Fotossíntese/fisiologia , Folhas de Planta/anatomia & histologia , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Plantas Geneticamente Modificadas , Água/fisiologia
15.
J Agric Food Chem ; 66(21): 5264-5274, 2018 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-29517900

RESUMO

Coffee is one of the most important global crops and provides a livelihood to millions of people living in developing countries. Coffee species have been described as being highly sensitive to climate change, as largely deduced from modeling studies based on predictions of rising temperatures and changing rainfall patterns. Here, we discuss the physiological responses of the coffee tree in the context of present and ongoing climate changes, including drought, heat, and light stresses, and interactions between these factors. We also summarize recent insights on the physiological and agronomic performance of coffee at elevated atmospheric CO2 concentrations and highlight the key role of CO2 in mitigating the harmful effects of heat stress. Evidence is shown suggesting that warming, per se, may be less harmful to coffee suitability than previously estimated, at least under the conditions of an adequate water supply. Finally, we discuss several mitigation strategies to improve crop performance in a changing world.


Assuntos
Coffea/crescimento & desenvolvimento , Coffea/fisiologia , Produtos Agrícolas/crescimento & desenvolvimento , Irrigação Agrícola , Dióxido de Carbono/análise , Mudança Climática , Café , Países em Desenvolvimento , Secas , Aquecimento Global , Temperatura Alta , Fotossíntese , Folhas de Planta/fisiologia , Chuva , Luz Solar
16.
J Exp Bot ; 68(15): 4309-4322, 2017 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-28922767

RESUMO

Over the last decades, most information on the mechanisms underlying tolerance to drought has been gained by considering this stress as a single event that happens just once in the life of a plant, in contrast to what occurs under natural conditions where recurrent drought episodes are the rule. Here we explored mechanisms of drought tolerance in coffee (Coffea canephora) plants from a broader perspective, integrating key aspects of plant physiology and biochemistry. We show that plants exposed to multiple drought events displayed higher photosynthetic rates, which were largely accounted for by biochemical rather than diffusive or hydraulic factors, than those submitted to drought for the first time. Indeed, these plants displayed higher activities of RuBisCO and other enzymes associated with carbon and antioxidant metabolism. Acclimation to multiple drought events involved the expression of trainable genes related to drought tolerance and was also associated with a deep metabolite reprogramming with concordant alterations in central metabolic processes such as respiration and photorespiration. Our results demonstrate that plants exposed to multiple drought cycles can develop a differential acclimation that potentiates their defence mechanisms, allowing them to be kept in an 'alert state' to successfully cope with further drought events.


Assuntos
Aclimatação , Coffea/fisiologia , Secas , Fotossíntese , Brasil , Coffea/genética
17.
Plant Physiol ; 170(1): 86-101, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26542441

RESUMO

Stomata control the exchange of CO2 and water vapor in land plants. Thus, whereas a constant supply of CO2 is required to maintain adequate rates of photosynthesis, the accompanying water losses must be tightly regulated to prevent dehydration and undesired metabolic changes. Accordingly, the uptake or release of ions and metabolites from guard cells is necessary to achieve normal stomatal function. The AtQUAC1, an R-type anion channel responsible for the release of malate from guard cells, is essential for efficient stomatal closure. Here, we demonstrate that mutant plants lacking AtQUAC1 accumulated higher levels of malate and fumarate. These mutant plants not only display slower stomatal closure in response to increased CO2 concentration and dark but are also characterized by improved mesophyll conductance. These responses were accompanied by increases in both photosynthesis and respiration rates, without affecting the activity of photosynthetic and respiratory enzymes and the expression of other transporter genes in guard cells, which ultimately led to improved growth. Collectively, our results highlight that the transport of organic acids plays a key role in plant cell metabolism and demonstrate that AtQUAC1 reduce diffusive limitations to photosynthesis, which, at least partially, explain the observed increments in growth under well-watered conditions.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Células do Mesofilo/fisiologia , Transportadores de Ânions Orgânicos/metabolismo , Fotossíntese/fisiologia , Estômatos de Plantas/fisiologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Carbono/metabolismo , Dióxido de Carbono/metabolismo , Secas , Enzimas/genética , Enzimas/metabolismo , Fumaratos/metabolismo , Regulação da Expressão Gênica de Plantas , Técnicas de Inativação de Genes , Malatos/metabolismo , Mutação , Transportadores de Ânions Orgânicos/genética , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Estômatos de Plantas/genética
18.
Plant Cell Environ ; 39(3): 694-705, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26510650

RESUMO

Stomatal responsiveness to vapour pressure deficit (VPD) results in continuous regulation of daytime gas-exchange directly influencing leaf water status and carbon gain. Current models can reasonably predict steady-state stomatal conductance (gs ) to changes in VPD but the gs dynamics between steady-states are poorly known. Here, we used a diverse sample of conifers and ferns to show that leaf hydraulic architecture, in particular leaf capacitance, has a major role in determining the gs response time to perturbations in VPD. By using simultaneous measurements of liquid and vapour fluxes into and out of leaves, the in situ fluctuations in leaf water balance were calculated and appeared to be closely tracked by changes in gs thus supporting a passive model of stomatal control. Indeed, good agreement was found between observed and predicted gs when using a hydropassive model based on hydraulic traits. We contend that a simple passive hydraulic control of stomata in response to changes in leaf water status provides for efficient stomatal responses to VPD in ferns and conifers, leading to closure rates as fast or faster than those seen in most angiosperms.


Assuntos
Gleiquênias/fisiologia , Estômatos de Plantas/fisiologia , Vapor , Gleiquênias/anatomia & histologia , Modelos Biológicos , Fatores de Tempo
19.
J Exp Bot ; 67(1): 341-52, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26503540

RESUMO

Coffee (Coffea spp.), a globally traded commodity, is a slow-growing tropical tree species that displays an improved photosynthetic performance when grown under elevated atmospheric CO2 concentrations ([CO2]). To investigate the mechanisms underlying this response, two commercial coffee cultivars (Catuaí and Obatã) were grown using the first free-air CO2 enrichment (FACE) facility in Latin America. Measurements were conducted in two contrasting growth seasons, which were characterized by the high (February) and low (August) sink demand. Elevated [CO2] led to increases in net photosynthetic rates (A) in parallel with decreased photorespiration rates, with no photochemical limitations to A. The stimulation of A by elevated CO2 supply was more prominent in August (56% on average) than in February (40% on average). Overall, the stomatal and mesophyll conductances, as well as the leaf nitrogen and phosphorus concentrations, were unresponsive to the treatments. Photosynthesis was strongly limited by diffusional constraints, particularly at the stomata level, and this pattern was little, if at all, affected by elevated [CO2]. Relative to February, starch pools (but not soluble sugars) increased remarkably (>500%) in August, with no detectable alteration in the maximum carboxylation capacity estimated on a chloroplast [CO2] basis. Upregulation of A by elevated [CO2] took place with no signs of photosynthetic downregulation, even during the period of low sink demand, when acclimation would be expected to be greatest.


Assuntos
Dióxido de Carbono/análise , Coffea/fisiologia , Fotossíntese , Coffea/química , Coffea/genética , Coffea/crescimento & desenvolvimento , Regulação para Baixo , Células do Mesofilo/fisiologia , Modelos Biológicos , Processos Fotoquímicos , Estômatos de Plantas/fisiologia , Estações do Ano
20.
Proc Natl Acad Sci U S A ; 111(40): 14489-93, 2014 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-25246559

RESUMO

Water stress is one of the primary selective forces in plant evolution. There are characters often cited as adaptations to water stress, but links between the function of these traits and adaptation to drying climates are tenuous. Here we combine distributional, climatic, and physiological evidence from 42 species of conifers to show that the evolution of drought resistance follows two distinct pathways, both involving the coordinated evolution of tissues regulating water supply (xylem) and water loss (stomatal pores) in leaves. Only species with very efficient stomatal closure, and hence low minimum rates of water loss, inhabit dry habitats, but species diverged in their apparent mechanism for maintaining closed stomata during drought. An ancestral mechanism found in Pinaceae and Araucariaceae species relies on high levels of the hormone abscisic acid (ABA) to close stomata during water stress. A second mechanism, found in the majority of Cupressaceae species, uses leaf desiccation rather than high ABA levels to close stomata during sustained water stress. Species in the latter group were characterized by xylem tissues with extreme resistance to embolism but low levels of foliar ABA after 30 d without water. The combination of low levels of ABA under stress with cavitation-resistant xylem enables these species to prolong stomatal opening during drought, potentially extending their photosynthetic activity between rainfall events. Our data demonstrate a surprising simplicity in the way conifers evolved to cope with water shortage, indicating a critical interaction between xylem and stomatal tissues during the process of evolution to dry climates.


Assuntos
Adaptação Fisiológica/fisiologia , Clima , Chuva , Traqueófitas/fisiologia , Ácido Abscísico/metabolismo , Cupressaceae/classificação , Cupressaceae/fisiologia , Secas , Ecossistema , Modelos Biológicos , Pinaceae/classificação , Pinaceae/fisiologia , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Estômatos de Plantas/fisiologia , Especificidade da Espécie , Traqueófitas/classificação , Água/metabolismo , Xilema/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...