Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Sci ; 19(1): 1-12, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36594099

RESUMO

Bladder cancer (BlCa) is the ninth most common cancer worldwide, associated with significant morbidity and mortality. Thus, understand the biological mechanisms underlying tumour progression is of great clinical significance. Vimentin (VIM) is (over)expressed in several carcinomas, putatively in association with EMT. We have previously found that VIM promoter methylation accurately identified BlCa and VIM expression associated with unfavourable prognosis. Herein, we sought to investigate VIM expression regulation and its role in malignant transformation of BlCa. Analysis of tissue samples disclosed higher VIM transcript, protein, and methylation levels in BlCa compared with normal urothelium. VIM protein and transcript levels significantly increased from non-muscle invasive (NMIBC) to muscle-invasive (MIBC) cases and to BlCa metastases. Inverse correlation between epithelial CDH1 and VIM, and a positive correlation between mesenchymal CDH2 and VIM were also observed. In BlCa cell lines, exposure to demethylating agent increased VIM protein, with concomitant decrease in VIM methylation. Moreover, exposure to histone deacetylases pan-inhibitor increased the deposit of active post-translational marks (PTMs) across VIM promoter. In primary normal urothelium cells, lower levels of active PTMs with concomitant higher levels of repressive marks deposit were observed. Finally, VIM knockdown in UMUC3 cell line increased epithelial-like features and decreased migration and invasion in vitro, decreasing tumour size and angiogenesis in vivo. We demonstrated that VIM promoter is epigenetically regulated in normal and neoplastic urothelium, which determine a VIM switch associated with EMT and acquisition of invasive and metastatic properties. These findings might allow for development of new, epigenetic-based, therapeutic strategies for BlCa.


Assuntos
Neoplasias da Bexiga Urinária , Humanos , Vimentina/genética , Vimentina/metabolismo , Neoplasias da Bexiga Urinária/metabolismo , Epigênese Genética/genética , Fenótipo , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica/genética
2.
Clin Transl Immunology ; 11(9): e1402, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36092481

RESUMO

Objectives: Bladder cancer (BlCa) is the tenth most frequent malignancy worldwide and the costliest to treat and monitor. Muscle-invasive BlCa (MIBC) has a dismal prognosis, entailing the need for alternative therapies for the standard radical cystectomy. Checkpoint blockade immunotherapy has been approved for high-grade non-muscle-invasive BlCa (HG NMIBC) and metastatic disease, but its effectiveness in localised MIBC remains under scrutiny. Herein, we sought to characterise and compare the immune infiltrate of HG NMIBC and MIBC samples, including ICOS expression, a targetable immune checkpoint associated with regulatory T cell(Tregs)-mediated immunosuppression. Methods: Immunohistochemistry for CD83, CD20, CD68, CD163, CD3, CD8, CD4, FoxP3/ICOS and PD-L1 was performed in HG NMIBC and MIBC samples (n = 206), and positive staining was quantified in the peritumoral and/or intratumoral tissue compartments with QuPath imaging software. Results: CD20+ B cells, CD68+ and CD163+ tumor-associated macrophages were significantly increased in MIBCs and associated with poor prognosis. In turn, higher infiltration of T cells was associated with prolonged survival, with exception of the CD4+ helper subset. Intratumoral expression of CD3 and CD8 was independent prognostic factors for increased disease-free survival (DFS) in multivariable analysis. Remarkably, Tregs (FoxP3+/FoxP3+ICOS+) were found differentially distributed between tissue compartments. PD-L1 immunoexpression independently predicted a shorter DFS and associated with higher infiltration of FoxP3+ICOS+ Tregs. Conclusions: Immune infiltrates of HG NMIBC and MIBC display significant differences that may help selecting patients for immunotherapies. Considering ICOS immunoexpression results, it might constitute a relevant therapeutic target, eventually in combination with anti-PD-1/PD-L1 therapies, for certain BlCa patient subsets.

3.
Cell Oncol (Dordr) ; 45(1): 135-149, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35064910

RESUMO

PURPOSE: Non-muscle invasive bladder cancer (NMIBC) is a highly recurrent disease that progresses to muscle-invasive bladder cancer (MIBC) in 5-25% of the cases. Epithelial-mesenchymal transition (EMT) has been associated with features of disease progression. Thus, we aimed to characterize the cadherin switch (CS), an EMT hallmark, and its regulatory mechanisms in bladder cancer (BlCa) progression, as well as the biological role of RCAD, a lesser-known cadherin, in bladder carcinogenesis. METHODS: Cadherin mRNA and promoter methylation levels were retrieved from The Cancer Genome Atlas (TCGA). Validation was performed in an independent set of 121 primary BlCa (NMIBC and MIBC) and 40 normal bladder samples from IPO Porto, using RT-qPCR and qMSP. Immunohistochemistry was performed in these samples and in 14 additional sarcomatoid BlCa. CRISPR-Cas9 was performed to explore the potential in vitro impact of RCAD on BlCa cell migration and invasion. RESULTS: In both the TCGA and IPO Porto BlCa cohorts, cadherin gene deregulation was observed compared to normal tissue samples, independent of promoter methylation. At the protein level, decreased E-cadherin and increased P- and R-cadherin expression was noted in BlCa tissues. In sarcomatoid BlCa the same trend was observed, with a more intense staining compared to that in conventional MIBCs. RCAD knockout considerably reduced the malignant properties of BlCa cells. CONCLUSIONS: Our data indicate that E-, P- and R-cadherin switches occur in BlCa, being associated with tumor progression. Promoter methylation is not the likely mechanism underlying cadherin expression deregulation. Our findings suggest an oncogenic role of RCAD in BlCa progression.


Assuntos
Neoplasias da Bexiga Urinária , Caderinas/genética , Caderinas/metabolismo , Regulação para Baixo/genética , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Bexiga Urinária/metabolismo , Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/patologia
4.
Mol Oncol ; 16(9): 1841-1856, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35048498

RESUMO

N6-methyladenosine (m6 A) and its regulatory proteins have been associated with tumorigenesis in several cancer types. However, knowledge on the mechanistic network related to m6 A in bladder cancer (BlCa) is rather limited, requiring further investigation of its functional role. We aimed to uncover the biological role of m6 A and related proteins in BlCa and understand how this influences tumor aggressiveness. N6-adenosine-methyltransferase catalytic subunit (METTL3), N6-adenosine-methyltransferase noncatalytic subunit (METTL14), protein virilizer homolog (VIRMA), and RNA demethylase ALKBH5 (ALKBH5) had significantly lower expression levels in BlCa compared to that in normal urothelium. METTL14 knockdown led to disruption of the remaining methyltransferase complex and a decrease in m6 A abundance, as well as overall reduced tumor aggressiveness (decreased cell invasion and migration capacity and increased apoptosis). Furthermore, in vivo, METTL14 knockdown caused tumor size reduction. Collectively, we propose methyltransferase METTL14 as a key component for m6 A RNA deposit and that it is closely related to BlCa progression, playing an important role in tumor aggressiveness. These data contribute to a better understanding of the m6 A writer complex, which might constitute an appealing therapeutic target.


Assuntos
Carcinoma de Células de Transição , Neoplasias da Bexiga Urinária , Adenosina/metabolismo , Regulação para Baixo , Feminino , Humanos , Masculino , Metiltransferases/genética , Metiltransferases/metabolismo , Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/genética
5.
Front Mol Biosci ; 9: 1070383, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36699696

RESUMO

Bladder cancer (BlCa) is a highly immunogenic cancer. Bacillus Calmette-Guérin (BCG) is the standard treatment for non-muscle invasive bladder cancer (NMIBC) patients and, recently, second-line immunotherapies have arisen to treat metastatic BlCa patients. Understanding the interactions between tumor cells, immune cells and soluble factors in bladder tumor microenvironment (TME) is crucial. Cytokines and chemokines released in the TME have a dual role, since they can exhibit both a pro-inflammatory and anti-inflammatory potential, driving infiltration and inflammation, and also promoting evasion of immune system and pro-tumoral effects. In BlCa disease, 70-80% are non-muscle invasive bladder cancer, while 20-30% are muscle-invasive bladder cancer (MIBC) at the time of diagnosis. However, during the follow up, about half of treated NMIBC patients recur once or more, with 5-25% progressing to muscle-invasive bladder cancer, which represents a significant concern to the clinic. Epithelial-mesenchymal transition (EMT) is one biological process associated with tumor progression. Specific cytokines present in bladder TME have been related with signaling pathways activation and EMT-related molecules regulation. In this review, we summarized the immune landscape in BlCa TME, along with the most relevant cytokines and their putative role in driving EMT processes, tumor progression, invasion, migration and metastasis formation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...