Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Genet ; 11(6): e1005276, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26047361

RESUMO

The bacterial replication cycle is driven by the DnaA protein which cycles between the active ATP-bound form and the inactive ADP-bound form. It has been suggested that DnaA also is the main controller of initiation frequency. Initiation is thought to occur when enough ATP-DnaA has accumulated. In this work we have performed cell cycle analysis of cells that contain a surplus of ATP-DnaA and asked whether initiation then occurs earlier. It does not. Cells with more than a 50% increase in the concentration of ATP-DnaA showed no changes in timing of replication. We suggest that although ATP-DnaA is the main actor in initiation of replication, its accumulation does not control the time of initiation. ATP-DnaA is the motor that drives the initiation process, but other factors will be required for the exact timing of initiation in response to the cell's environment. We also investigated the in vivo roles of datA dependent DnaA inactivation (DDAH) and the DnaA-binding protein DiaA. Loss of DDAH affected the cell cycle machinery only during slow growth and made it sensitive to the concentration of DiaA protein. The result indicates that compromised cell cycle machines perform in a less robust manner.


Assuntos
Proteínas de Bactérias/metabolismo , Replicação do DNA , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/genética , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Ligação a DNA/genética , Escherichia coli/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...