Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Sci ; 9(42): 8150-8159, 2018 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-30542566

RESUMO

Cyclotriguaiacylene has been functionalised with 3- or 4-pyridyl-azo-phenyl groups to form a series of molecular hosts with three azobenzene-type groups that exhibit reversible photo-isomerisation. Reaction of the host molecules with [Ir(C^N)2(NCMe)2]+ where C^N is the cyclometallating 2-phenylpyridinato, 2-(4-methylphenyl)pyridinato or 2-(4,5,6-trifluorophenyl)pyridinato results in the self-assembly of a family of five different [{Ir(C^N)2}3(L)2]3+ coordination cages. Photo-irradiation of each of the cages with a high energy laser results in E → Z photo-isomerisation of the pyridyl-azo-phenyl groups with up to 40% of groups isomerising. Isomerisation can be reversed by exposure to blue light. Thus, the cages show reversible structure-switching while maintaining their compositional integrity. This represents the largest photo-induced structural change yet reported for a structurally-integral component of a coordination cage. Energy minimised molecular models indicate a switched cage has a smaller internal space than the initial all-E isomer. The [Ir(C^N)2(NCMe)2]+ cages are weakly emissive, each with a deep blue luminescence at ca. 450 nm.

2.
Inorg Chem ; 57(14): 8581-8587, 2018 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-29969251

RESUMO

The use of a new second-sphere coordination methodology for emission color tuning of iridium complexes is presented. We demonstrate that a complementary H-bonding guest molecule binding through contiguous triple H-bonding interactions can induce a shift in the emission of the iridium complex from green to blue without the need to alter the ligand structure around the metal center, while simultaneously increasing the photoluminescence quantum yield in solution. The association constant for this host-guest interaction was determined to be Ka = 4.3 × 103 M-1 in a solution of 2% dimethyl sulfoxide in chloroform by UV-vis titration analysis and the impact of the hydrogen bonding interaction further probed by photoluminescence, electrochemical, and computational methods. Our findings suggest that directed self-assemblies are an effective approach to influencing emission properties of phosphorescent iridium(III) complexes.

3.
Sci Rep ; 8(1): 3050, 2018 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-29445234

RESUMO

Silicon Quantum Dots (SQDs) have recently attracted great interest due to their excellent optical properties, low cytotoxicity, and ease of surface modification. The size of SQDs and type of ligand on their surface has a great influence on their optical properties which is still poorly understood. Here we report the synthesis and spectroscopic studies of three families of unreported SQDs functionalized by covalently linking to the aromatic fluorophores, 9-vinylphenanthrene, 1-vinylpyrene, and 3-vinylperylene. The results showed that the prepared functionalized SQDs had a highly-controlled diameter by HR-TEM, ranging from 1.7-2.1 nm. The photophysical measurements of the assemblies provided clear evidence for efficient energy transfer from the fluorophore to the SQD core. FÓ§rster energy transfer is the likely mechanism in these assemblies. As a result of the photogenerated energy transfer process, the emission color of the SQD core could be efficiently tuned and its emission quantum efficiency enhanced. To demonstrate the potential application of the synthesized SQDs for bioimaging of cancer cells, the water-soluble perylene- and pyrene-capped SQDs were examined for fluorescent imaging of HeLa cells. The SQDs were shown to be of low cytotoxicity.

4.
ACS Appl Mater Interfaces ; 8(49): 33907-33915, 2016 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-27960443

RESUMO

Despite hundreds of cationic bis-cyclometalated iridium(III) complexes having been explored as emitters for light-emitting electrochemical cells (LEECs), uniformly their composition has been in the form of a racemic mixture of Λ and Δ enantiomers. The investigation of LEECs using enantiopure iridium(III) emitters, however, remains unprecedented. Herein, we report the preparation, the crystal structures, and the optoelectronic properties of two families of cyclometalated iridium(III) complexes of the form of [(C^N)2Ir(dtBubpy)]PF6 (where dtBubpy is 4,4'-di-tert-butyl-2,2'-bipyridine) in both their racemic and enantiopure configurations. LEEC devices using Λ and Δ enantiomers as well as the racemic mixture of both families have been prepared, and the device performances were tested. Importantly, different solid-state photophysical properties exist between enantiopure and racemic emitters, which are also reflected in the device performances.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...