Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Allergy Clin Immunol ; 153(5): 1330-1343, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38369029

RESUMO

BACKGROUND: The development of atopic dermatitis (AD) drugs is challenged by many disease phenotypes and trial design options, which are hard to explore experimentally. OBJECTIVE: We aimed to optimize AD trial design using simulations. METHODS: We constructed a quantitative systems pharmacology model of AD and standard of care (SoC) treatments and generated a phenotypically diverse virtual population whose parameter distribution was derived from known relationships between AD biomarkers and disease severity and calibrated using disease severity evolution under SoC regimens. RESULTS: We applied this workflow to the immunomodulator OM-85, currently being investigated for its potential use in AD, and calibrated the investigational treatment model with the efficacy profile of an existing trial (thereby enriching it with plausible marker levels and dynamics). We assessed the sensitivity of trial outcomes to trial protocol and found that for this particular example the choice of end point is more important than the choice of dosing regimen and patient selection by model-based responder enrichment could increase the expected effect size. A global sensitivity analysis revealed that only a limited subset of baseline biomarkers is needed to predict the drug response of the full virtual population. CONCLUSIONS: This AD quantitative systems pharmacology workflow built around knowledge of marker-severity relationships as well as SoC efficacy can be tailored to specific development cases to optimize several trial protocol parameters and biomarker stratification and therefore has promise to become a powerful model-informed AD drug development and personalized medicine tool.


Assuntos
Biomarcadores , Ensaios Clínicos como Assunto , Dermatite Atópica , Dermatite Atópica/tratamento farmacológico , Humanos , Farmacologia em Rede , Fluxo de Trabalho , Fatores Imunológicos/uso terapêutico , Fatores Imunológicos/farmacologia , Simulação por Computador , Projetos de Pesquisa , Índice de Gravidade de Doença
2.
Nucleic Acids Res ; 50(16): 9149-9161, 2022 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-35950487

RESUMO

DNA supercoiling is an essential mechanism of bacterial chromosome compaction, whose level is mainly regulated by topoisomerase I and DNA gyrase. Inhibiting either of these enzymes with antibiotics leads to global supercoiling modifications and subsequent changes in global gene expression. In previous studies, genes responding to DNA relaxation induced by DNA gyrase inhibition were categorised as 'supercoiling-sensitive'. Here, we studied the opposite variation of DNA supercoiling in the phytopathogen Dickeya dadantii using the non-marketed antibiotic seconeolitsine. We showed that the drug is active against topoisomerase I from this species, and analysed the first transcriptomic response of a Gram-negative bacterium to topoisomerase I inhibition. We find that the responding genes essentially differ from those observed after DNA relaxation, and further depend on the growth phase. We characterised these genes at the functional level, and also detected distinct patterns in terms of expression level, spatial and orientational organisation along the chromosome. Altogether, these results highlight that the supercoiling-sensitivity is a complex feature, which depends on the action of specific topoisomerases, on the physiological conditions, and on their genomic context. Based on previous in vitro expression data of several promoters, we propose a qualitative model of SC-dependent regulation that accounts for many of the contrasting transcriptomic features observed after DNA gyrase or topoisomerase I inhibition.


Assuntos
DNA Girase , DNA Topoisomerases Tipo I , DNA Girase/genética , DNA Girase/metabolismo , DNA Topoisomerases Tipo I/metabolismo , DNA Super-Helicoidal/genética , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Enterobacteriaceae/genética , Enterobacteriaceae/metabolismo , Antibacterianos/farmacologia
3.
J Biol Chem ; 298(1): 101446, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34826421

RESUMO

The catabolism of pectin from plant cell walls plays a crucial role in the virulence of the phytopathogen Dickeya dadantii. In particular, the timely expression of pel genes encoding major pectate lyases is essential to circumvent the plant defense systems and induce massive pectinolytic activity during the maceration phase. Previous studies identified the role of a positive feedback loop specific to the pectin-degradation pathway, whereas the precise signals controlling the dynamics of pectate lyase expression were unclear. Here, we show that the latter is controlled by a metabolic switch involving both glucose and pectin. We measured the HPLC concentration profiles of the key metabolites related to these two sources of carbon, cAMP and 2-keto-3-deoxygluconate, and developed a dynamic and quantitative model of the process integrating the associated regulators, cAMP receptor protein and KdgR. The model describes the regulatory events occurring at the promoters of two major pel genes, pelE and pelD. It highlights that their activity is controlled by a mechanism of carbon catabolite repression, which directly controls the virulence of D. dadantii. The model also shows that quantitative differences in the binding properties of common regulators at these two promoters resulted in a qualitatively different role of pelD and pelE in the metabolic switch, and also likely in conditions of infection, justifying their evolutionary conservation as separate genes in this species.


Assuntos
Repressão Catabólica , Dickeya , Pectinas , Proteínas de Bactérias/metabolismo , Dickeya/metabolismo , Digestão , Enterobacteriaceae/metabolismo , Regulação Bacteriana da Expressão Gênica , Pectinas/metabolismo , Polissacarídeo-Liases/química
4.
Curr Res Microb Sci ; 2: 100029, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34841320

RESUMO

Kleibsiella pneumoniae Kpn555, isolated from coffee waste pulp showed high level of tolerance to lead with a minimum inhibitory concentration of 900 mg/L. On its growth in nutrient broth supplemented with lead, brown clumps were visualised at the bottom of the flask. On scanning and transmission electron microscopic studies the brown clumps were corroborated to be bacterial cells with lead biosorbed on the cell surface and accumulated inside the cytoplasm. Biochemical and FT-IR analysis of the extracellular polymeric substance produced on exposure to lead revealed its chemical nature as glycolipid with protein moieties. Purified EPS (100 mg/L) could remove 50% of lead from aqueous solution (200 mg/L). Isolation of plasmid from Klebsiella pneumoniae Kpn555 revealed the presence of a plasmid of size 30-40 kb. This capability of the bacteria was proven to be plasmid mediated as the Escherichia coli DH5α cells transformed with the plasmid of Klebsiella pneumoniae Kpn555 also could tolerate 900 mg/L of lead and form brown clumps. This study shows that these bacteria, aided by EPS could serve as an effective agent for the removal of lead from contaminated water environmental samples.

5.
Anal Biochem ; 619: 114061, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33285123

RESUMO

A rapid and sensitive High Performance Liquid Chromatography (HPLC) method with photometric and fluorescence detection is developed for routine analysis of 2-Keto-3-deoxy-gluconate (KDG), a catabolite product of pectin and alginate. These polysaccharides are primary-based compounds for biofuel production and for generation of high-value-added products. HPLC is performed, after derivatization of the 2-oxo-acid groups of the metabolite with o-phenylenediamine (oPD), using a linear gradient of trifluoroacetic acid and acetonitrile. Quantification is accomplished with an internal standard method. The gradient is optimized to distinguish KDG from its close structural analogues such as 5-keto-4-deoxyuronate (DKI) and 2,5-diketo-3-deoxygluconate (DKII). The proposed method is simple, highly sensitive and accurate for time course analysis of pectin or alginate degradation.


Assuntos
Alginatos/metabolismo , Dickeya/metabolismo , Gluconatos , Pectinas/metabolismo , Gluconatos/química , Gluconatos/isolamento & purificação , Gluconatos/metabolismo
6.
Comput Struct Biotechnol J ; 17: 1047-1055, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31452857

RESUMO

DNA supercoiling acts as a global and ancestral regulator of bacterial gene expression. In this review, we advocate that it plays a pivotal role in host-pathogen interactions by transducing environmental signals to the bacterial chromosome and coordinating its transcriptional response. We present available evidence that DNA supercoiling is modulated by environmental stress conditions relevant to the infection process according to ancestral mechanisms, in zoopathogens as well as phytopathogens. We review the results of transcriptomics studies obtained in widely distant bacterial species, showing that such structural transitions of the chromosome are associated to a complex transcriptional response affecting a large fraction of the genome. Mechanisms and computational models of the transcriptional regulation by DNA supercoiling are then discussed, involving both basal interactions of RNA Polymerase with promoter DNA, and more specific interactions with regulatory proteins. A final part is specifically focused on the regulation of virulence genes within pathogenicity islands of several pathogenic bacterial species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...