Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mater Sci Eng C Mater Biol Appl ; 65: 287-94, 2016 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-27157754

RESUMO

In order to confer adhesive properties to commercial polypropylene (PP) meshes, a surface plasma-induced deposition of poly-(acrylic acid) (PPAA) is performed. Once biomaterials were functionalized, different post-deposition treatments (i.e. water washing and/or thermal treatments) were investigated with the aim of monitoring the coating degradation (and therefore the loss of adhesion) after 3months of aging in both humid/oxidant (air) and inert (nitrogen) atmospheres. A wide physicochemical characterization was carried out in order to evaluate the functionalization effectiveness and the adhesive coating homogeneity by means of static water drop shape analysis and several spectroscopies (namely, FTIR, UV-Visible and X-ray Photoemission Spectroscopy). The modification of the adhesion properties after post-deposition treatments as well as aging under different storage atmospheres were investigated by means of Atomic Force Microscopy (AFM) used in Force/Distance (F/D) mode. This technique confirms itself as a powerful tool for unveiling the surface adhesion capacity as well as the homogeneity of the functional coatings along the fibers. Results obtained evidenced that post-deposition treatments are mandatory in order to remove all oligomers produced during the plasma-treatment, whereas aging tests evidenced that these devices can be simply stored in presence of air for at least three months without a meaningful degradation of the original properties.


Assuntos
Acrilatos/química , Adesivos/química , Gases em Plasma/química , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Espectroscopia Fotoeletrônica , Polimerização , Polipropilenos/química , Espectroscopia de Infravermelho com Transformada de Fourier
2.
J Mater Chem B ; 2(32): 5287-5294, 2014 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-32261670

RESUMO

Polypropylene nets are widely used as hernioplasty prostheses. The reproduction of bacteria within the net fibers intersections can occur after the application of the prosthesis causing infections. For this reason, bacteria have to be removed in the very early stage of surgical implantation. Activation of the prosthesis surface was done by an innovative oxidizing plasma treatment (APP-DBD) working under atmospheric conditions in order to favor the deposition of an antibacterial coating of chitosan (biocompatible carbohydrate) and ciprofloxacin (broad spectrum antibiotic). Two different coating mixtures were realised and the antibacterial properties of such functionalised nets were investigated, together with their effectiveness. Physico-chemical characterisations of meshes were carried out before and after functionalisation by SEM-EDS and infrared spectroscopy. The release of both chitosan and ciprofloxacin, under controlled experimental conditions, was followed respectively by colorimetric determination (using UV-Visible spectroscopy) and chromatographic analysis (using HPLC). In vitro tests allow verifying antimicrobial activity (inoculation of specimens in a Staphylococcus aureus suspension).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...