Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(19)2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37834037

RESUMO

Topoisomerases are interesting targets in cancer chemotherapy. Here, we describe the design and synthesis of a novel copper(II) indenoisoquinoline complex, WN198. The new organometallic compound exhibits a cytotoxic effect on five adenocarcinoma cell lines (MCF-7, MDA-MB-231, HeLa, HT-29, and DU-145) with the lowest IC50 (0.37 ± 0.04 µM) for the triple-negative MDA-MB-231 breast cancer cell line. Below 5 µM, WN198 was ineffective on non-tumorigenic epithelial breast MCF-10A cells and Xenopus oocyte G2/M transition or embryonic development. Moreover, cancer cell lines showed autophagy markers including Beclin-1 accumulation and LC3-II formation. The DNA interaction of this new compound was evaluated and the dose-dependent topoisomerase I activity starting at 1 µM was confirmed using in vitro tests and has intercalation properties into DNA shown by melting curves and fluorescence measurements. Molecular modeling showed that the main interaction occurs with the aromatic ring but copper stabilizes the molecule before binding and so can putatively increase the potency as well. In this way, copper-derived indenoisoquinoline topoisomerase I inhibitor WN198 is a promising antitumorigenic agent for the development of future DNA-damaging treatments.


Assuntos
Antineoplásicos , Inibidores da Topoisomerase I , Humanos , Inibidores da Topoisomerase I/farmacologia , Cobre/farmacologia , Proliferação de Células , Inibidores da Topoisomerase/farmacologia , Antineoplásicos/química , DNA/farmacologia , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Estrutura Molecular , Relação Estrutura-Atividade , Apoptose
2.
J Biol Chem ; 299(8): 104950, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37354972

RESUMO

Xenopus oocytes are encompassed by a layer of follicular cells that contribute to oocyte growth and meiosis in relation to oocyte maturation. However, the effects of the interaction between follicular cells and the oocyte surface on meiotic processes are unclear. Here, we investigated Xenopus follicular cell function using oocyte signaling and heterologous-expressing capabilities. We found that oocytes deprotected from their surrounding layer of follicular cells and expressing the epidermal growth factor (EGF) receptor (EGFR) and the Grb7 adaptor undergo accelerated prophase I to metaphase II meiosis progression upon stimulation by EGF. This unusual maturation unravels atypical spindle formation but is rescued by inhibiting integrin ß1 or Grb7 binding to the EGFR. In addition, we determined that oocytes surrounded by their follicular cells expressing EGFR-Grb7 exhibit normal meiotic resumption. These oocytes are protected from abnormal meiotic spindle formation through the recruitment of O-GlcNAcylated Grb7, and OGT (O-GlcNAc transferase), the enzyme responsible for O-GlcNAcylation processes, in the integrin ß1-EGFR complex. Folliculated oocytes can be forced to adopt an abnormal phenotype and exclusive Grb7 Y338 and Y188 phosphorylation instead of O-GlcNAcylation under integrin activation. Furthermore, an O-GlcNAcylation increase (by inhibition of O-GlcNAcase), the glycosidase that removes O-GlcNAc moieties, or decrease (by inhibition of OGT) amplifies oocyte spindle defects when follicular cells are absent highlighting a control of the meiotic spindle by the OGT-O-GlcNAcase duo. In summary, our study provides further insight into the role of the follicular cell layer in oocyte meiosis progression.


Assuntos
Fator de Crescimento Epidérmico , Integrina beta1 , Oócitos , Xenopus laevis , Animais , Acilação , Regulação para Baixo , Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/metabolismo , Proteína Adaptadora GRB7/metabolismo , Integrina beta1/genética , Integrina beta1/metabolismo , Meiose , Oócitos/citologia , Oócitos/crescimento & desenvolvimento , Oócitos/metabolismo , Fuso Acromático/metabolismo , Xenopus laevis/metabolismo
3.
Front Cell Dev Biol ; 10: 982931, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36340022

RESUMO

Sialic acids are a family of 9-carbon monosaccharides with particular physicochemical properties. They modulate the biological functions of the molecules that carry them and are involved in several steps of the reproductive process. Sialoglycoproteins participate in the balance between species recognition and specificity, and the mechanisms of these aspects remain an issue in gametes formation and binding in metazoan reproduction. Sialoglycoproteins form a specific coat at the gametes surface and specific polysialylated chains are present on marine species oocytes. Spermatozoa are submitted to critical sialic acid changes in the female reproductive tract facilitating their migration, their survival through the modulation of the female innate immune response, and the final oocyte-binding event. To decipher the role of sialic acids in gametes and at fertilization, the dynamical changes of enzymes involved in their synthesis and removal have to be further considered.

4.
Open Biol ; 12(8): 220015, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35920043

RESUMO

Protein phosphatase 1 (PP1) is a key enzyme for Plasmodium development. However, the detailed mechanisms underlying its regulation remain to be deciphered. Here, we report the functional characterization of the Plasmodium berghei leucine-rich repeat protein 1 (PbLRR1), an orthologue of SDS22, one of the most ancient and conserved PP1 interactors. Our study shows that PbLRR1 is expressed during intra-erythrocytic development of the parasite, and up to the zygote stage in mosquitoes. PbLRR1 can be found in complex with PbPP1 in both asexual and sexual stages and inhibits its phosphatase activity. Genetic analysis demonstrates that PbLRR1 depletion adversely affects the development of oocysts. PbLRR1 interactome analysis associated with phospho-proteomics studies identifies several novel putative PbLRR1/PbPP1 partners. Some of these partners have previously been characterized as essential for the parasite sexual development. Interestingly, and for the first time, Inhibitor 3 (I3), a well-known and direct interactant of Plasmodium PP1, was found to be drastically hypophosphorylated in PbLRR1-depleted parasites. These data, along with the detection of I3 with PP1 in the LRR1 interactome, strongly suggest that the phosphorylation status of PbI3 is under the control of the PP1-LRR1 complex and could contribute (in)directly to oocyst development. This study provides new insights into previously unrecognized PbPP1 fine regulation of Plasmodium oocyst development through its interaction with PbLRR1.


Assuntos
Proteínas de Repetições Ricas em Leucina , Plasmodium berghei , Animais , Oocistos/metabolismo , Fosforilação , Plasmodium berghei/genética , Plasmodium berghei/metabolismo , Proteína Fosfatase 1/genética , Proteína Fosfatase 1/metabolismo
5.
Front Oncol ; 12: 837373, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35280788

RESUMO

Topoisomerases, targets of inhibitors used in chemotherapy, induce DNA breaks accumulation leading to cancer cell death. A newly synthesized copper(II) indenoisoquinoline complex WN197 exhibits a cytotoxic effect below 0.5 µM, on MDA-MB-231, HeLa, and HT-29 cells. At low doses, WN197 inhibits topoisomerase I. At higher doses, it inhibits topoisomerase IIα and IIß, and displays DNA intercalation properties. DNA damage is detected by the presence of γH2AX. The activation of the DNA Damage Response (DDR) occurs through the phosphorylation of ATM/ATR, Chk1/2 kinases, and the increase of p21, a p53 target. WN197 induces a G2 phase arrest characterized by the unphosphorylated form of histone H3, the accumulation of phosphorylated Cdk1, and an association of Cdc25C with 14.3.3. Cancer cells die by autophagy with Beclin-1 accumulation, LC3-II formation, p62 degradation, and RAPTOR phosphorylation in the mTOR complex. Finally, WN197 by inhibiting topoisomerase I at low concentration with high efficiency is a promising agent for the development of future DNA damaging chemotherapies.

6.
FEBS Lett ; 595(21): 2655-2664, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34551132

RESUMO

The high-affinity tyrosine kinase receptor MET plays a pivotal role in several facets of cell regulation. Although its mitogenic effect is well documented, some aspects of connection patterns between signaling pathways involved in cell cycle progression remain to be deciphered. We have used a tractable heterologous expression system, the Xenopus oocyte, to detect connections between distinct MET signaling cascades involved in G2/M progression. Our results reveal that Src acts as an adapter via its SH2 domain to recruit 3-phosphoinositide-dependent protein kinase 1 (PDK1) to the MET signaling complex leading to Akt phosphorylation. These data define an original crosstalk between Src and Akt signaling pathways that contributes to MET-induced entry into the M phase, and deserves further investigation in pathologies harboring deregulation of this receptor.


Assuntos
Proteínas Quinases Dependentes de 3-Fosfoinositídeo , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Ciclo Celular , Humanos , Fosforilação
7.
Cancers (Basel) ; 13(15)2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34359720

RESUMO

Cells respond to genotoxic stress through a series of complex protein pathways called DNA damage response (DDR). These monitoring mechanisms ensure the maintenance and the transfer of a correct genome to daughter cells through a selection of DNA repair, cell cycle regulation, and programmed cell death processes. Canonical or non-canonical DDRs are highly organized and controlled to play crucial roles in genome stability and diversity. When altered or mutated, the proteins in these complex networks lead to many diseases that share common features, and to tumor formation. In recent years, technological advances have made it possible to benefit from the principles and mechanisms of DDR to target and eliminate cancer cells. These new types of treatments are adapted to the different types of tumor sensitivity and could benefit from a combination of therapies to ensure maximal efficiency.

8.
Neurobiol Dis ; 157: 105426, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34144124

RESUMO

LRRK2 is a highly phosphorylated multidomain protein and mutations in the gene encoding LRRK2 are a major genetic determinant of Parkinson's disease (PD). Dephosphorylation at LRRK2's S910/S935/S955/S973 phosphosite cluster is observed in several conditions including in sporadic PD brain, in several disease mutant forms of LRRK2 and after pharmacological LRRK2 kinase inhibition. However, the mechanism of LRRK2 dephosphorylation is poorly understood. We performed a phosphatome-wide reverse genetics screen to identify phosphatases involved in the dephosphorylation of the LRRK2 phosphosite S935. Candidate phosphatases selected from the primary screen were tested in mammalian cells, Xenopus oocytes and in vitro. Effects of PP2A on endogenous LRRK2 phosphorylation were examined via expression modulation with CRISPR/dCas9. Our screening revealed LRRK2 phosphorylation regulators linked to the PP1 and PP2A holoenzyme complexes as well as CDC25 phosphatases. We showed that dephosphorylation induced by different kinase inhibitor triggered relocalisation of phosphatases PP1 and PP2A in LRRK2 subcellular compartments in HEK-293 T cells. We also demonstrated that LRRK2 is an authentic substrate of PP2A both in vitro and in Xenopus oocytes. We singled out the PP2A holoenzyme PPP2CA:PPP2R2 as a powerful phosphoregulator of pS935-LRRK2. Furthermore, we demonstrated that this specific PP2A holoenzyme induces LRRK2 relocalization and triggers LRRK2 ubiquitination, suggesting its involvement in LRRK2 clearance. The identification of the PPP2CA:PPP2R2 complex regulating LRRK2 S910/S935/S955/S973 phosphorylation paves the way for studies refining PD therapeutic strategies that impact LRRK2 phosphorylation.


Assuntos
Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Proteína Fosfatase 1/metabolismo , Proteína Fosfatase 2/metabolismo , Animais , Células HEK293 , Holoenzimas/metabolismo , Humanos , Técnicas In Vitro , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Proteínas do Tecido Nervoso/metabolismo , Oócitos/metabolismo , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Transporte Proteico/efeitos dos fármacos , Proteínas de Xenopus/metabolismo , Xenopus laevis
9.
Cancers (Basel) ; 12(10)2020 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-33027952

RESUMO

Organometallics, such as copper compounds, are cancer chemotherapeutics used alone or in combination with other drugs. One small group of copper complexes exerts an effective inhibitory action on topoisomerases, which participate in the regulation of DNA topology. Copper complexes inhibitors of topoisomerases 1 and 2 work by different molecular mechanisms, analyzed herein. They allow genesis of DNA breaks after the formation of a ternary complex, or act in a catalytic mode, often display DNA intercalative properties and ROS production, and sometimes display dual effects. These amplified actions have repercussions on the cell cycle checkpoints and death effectors. Copper complexes of topoisomerase inhibitors are analyzed in a broader synthetic view and in the context of cancer cell mutations. Finally, new emerging treatment aspects are depicted to encourage the expansion of this family of highly active anticancer drugs and to expend their use in clinical trials and future cancer therapy.

10.
Int J Mol Sci ; 21(9)2020 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-32357477

RESUMO

Xenopus oocytes were used as cellular and molecular sentinels to assess the effects of a new class of organometallic compounds called ferrocenyl dihydroquinolines that have been developed as potential anti-cancer agents. One ferrocenyl dihydroquinoline compound exerted deleterious effects on oocyte survival after 48 h of incubation at 100 µM. Two ferrocenyl dihydroquinoline compounds had an inhibitory effect on the resumption of progesterone induced oocyte meiosis, compared to controls without ferrocenyl groups. In these inhibited oocytes, no MPF (Cdk1/cyclin B) activity was detected by western blot analysis as shown by the lack of phosphorylation of histone H3. The dephosphorylation of the inhibitory Y15 residue of Cdk1 occurred but cyclin B was degraded. Moreover, two apoptotic death markers, the active caspase 3 and the phosphorylated histone H2, were detected. Only 7-chloro-1-ferrocenylmethyl-4-(phenylylimino)-1,4-dihydroquinoline (8) did not show any toxicity and allowed the assembly of a histologically normal metaphase II meiotic spindle while inhibiting the proliferation of cancer cell lines with a low IC50, suggesting that this compound appears suitable as an antimitotic agent.


Assuntos
Compostos Ferrosos/farmacologia , Oócitos/fisiologia , Progesterona/farmacologia , Quinolinas/farmacologia , Proteínas de Xenopus/metabolismo , Animais , Proteína Quinase CDC2/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ciclina B/metabolismo , Feminino , Compostos Ferrosos/química , Regulação da Expressão Gênica/efeitos dos fármacos , Células HeLa , Histonas/metabolismo , Humanos , Prófase Meiótica I , Estrutura Molecular , Oócitos/efeitos dos fármacos , Fosforilação , Quinolinas/química , Xenopus laevis/metabolismo
11.
Cells ; 9(1)2020 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-31963573

RESUMO

The role of hydrogen sulfide (H2S) is addressed in Xenopuslaevis oocytes. Three enzymes involved in H2S metabolism, cystathionine ß-synthase, cystathionine γ-lyase, and 3-mercaptopyruvate sulfurtransferase, were detected in prophase I and metaphase II-arrested oocytes and drove an acceleration of oocyte meiosis resumption when inhibited. Moreover, meiosis resumption is associated with a significant decrease in endogenous H2S. On another hand, a dose-dependent inhibition was obtained using the H2S donor, NaHS (1 and 5 mM). NaHS impaired translation. NaHS did not induce the dissociation of the components of the M-phase promoting factor (MPF), cyclin B and Cdk1, nor directly impacted the MPF activity. However, the M-phase entry induced by microinjection of metaphase II MPF-containing cytoplasm was diminished, suggesting upstream components of the MPF auto-amplification loop were sensitive to H2S. Superoxide dismutase and catalase hindered the effects of NaHS, and this sensitivity was partially dependent on the production of reactive oxygen species (ROS). In contrast to other species, no apoptosis was promoted. These results suggest a contribution of H2S signaling in the timing of amphibian oocytes meiosis resumption.


Assuntos
Sulfeto de Hidrogênio/metabolismo , Fator Promotor de Maturação/metabolismo , Meiose/efeitos dos fármacos , Oócitos/metabolismo , Sulfetos/farmacologia , Animais , Apoptose/efeitos dos fármacos , Catalase/metabolismo , Proteínas de Ciclo Celular/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Ciclina B/metabolismo , Cistationina beta-Sintase/antagonistas & inibidores , Cistationina beta-Sintase/metabolismo , Cistationina gama-Liase/antagonistas & inibidores , Cistationina gama-Liase/metabolismo , Citoplasma/metabolismo , Feminino , Prófase Meiótica I/efeitos dos fármacos , Metáfase/efeitos dos fármacos , Oócitos/química , Oócitos/enzimologia , Proteínas Quinases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sulfetos/metabolismo , Sulfurtransferases/antagonistas & inibidores , Sulfurtransferases/metabolismo , Superóxido Dismutase/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis , Fosfatases cdc25/metabolismo
12.
Front Microbiol ; 9: 2617, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30429842

RESUMO

With its multiple regulatory partners, the conserved Protein Phosphatase type-1 (PP1) plays a central role in many functions of the biology of eukaryotic cells, including Plasmodium falciparum. Here, we characterized a protein named PfRCC-PIP, as a major partner of PfPP1. We established its direct interaction in vitro and its presence in complex with PfPP1 in the parasite. The use of Xenopus oocyte model revealed that RCC-PIP can interact with the endogenous PP1 and act in synergy with suboptimal doses of progesterone to trigger oocyte maturation, suggesting a regulatory effect on PP1. Reverse genetic studies suggested an essential role for RCC-PIP since no viable knock-out parasites could be obtained. Further, we demonstrated the capacity of protein region containing RCC1 motifs to interact with the parasite kinase CDPK7. These data suggest that this protein is both a kinase and a phosphatase anchoring protein that could provide a platform to regulate phosphorylation/dephosphorylation processes.

13.
Front Microbiol ; 7: 777, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27303372

RESUMO

Protein phosphatase 1 (PP1c) is one of the main phosphatases whose function is shaped by many regulators to confer a specific location and a selective function for this enzyme. Here, we report that eukaryotic initiation factor 2ß of Plasmodium falciparum (PfeIF2ß) is an interactor of PfPP1c. Sequence analysis of PfeIF2ß revealed a deletion of 111 amino acids when compared to its human counterpart and the presence of two potential binding motifs to PfPP1 ((29)FGEKKK(34), (103)KVAW(106)). As expected, we showed that PfeIF2ß binds PfeIF2γ and PfeIF5, confirming its canonical interaction with partners of the translation complex. Studies of the PfeIF2ß-PfPP1 interaction using wild-type, single and double mutated versions of PfeIF2ß revealed that both binding motifs are critical. We next showed that PfeIF2ß is able to induce Germinal Vesicle Break Down (GVBD) when expressed in Xenopus oocytes, an indicator of its capacity to regulate PP1. Only combined mutations of both binding motifs abolished the interaction with PP1 and the induction of GVBD. In P. falciparum, although the locus is accessible for genetic manipulation, PfeIF2ß seems to play an essential role in intraerythrocytic cycle as no viable knockout parasites were detectable. Interestingly, as for PfPP1, the subcellular fractionation of P. falciparum localized PfeIF2ß in cytoplasm and nuclear extracts, suggesting a potential effect on PfPP1 in both compartments and raising the question of a non-canonical function of PfeIf2ß in the nucleus. Hence, the role played by PfeIF2ß in blood stage parasites could occur at multiple levels involving the binding to proteins of the translational complex and to PfPP1.

14.
J Vis Exp ; (103)2015 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-26437037

RESUMO

Protein synthesis is a fundamental process to gene expression impacting diverse biological processes notably adaptation to environmental conditions. The initiation step, which involves the assembly of the ribosomal subunits at the mRNA initiation codon, involved initiation factor including eIF4G1. Defects in this rate limiting step of translation are linked to diverse disorders. To study the potential consequences of such deregulations, Xenopus laevis oocytes constitute an attractive model with high degrees of conservation of essential cellular and molecular mechanisms with human. In addition, during meiotic maturation, oocytes are transcriptionally repressed and all necessary proteins are translated from preexisting, maternally derived mRNAs. This inexpensive model enables exogenous mRNA to become perfectly integrated with an effective translation. Here is described a protocol for assessing translation with a factor of interest (here eIF4G1) using stored maternal mRNA that are the first to be polyadenylated and translated during oocyte maturation as a physiological readout. At first, mRNA synthetized by in vitro transcription of plasmids of interest (here eIF4G1) are injected in oocytes and kinetics of oocyte maturation by Germinal Vesicle Breakdown detection is determined. The studied maternal mRNA target is the serine/threonine-protein-kinase mos. Its polyadenylation and its subsequent translation are investigated together with the expression and phosphorylation of proteins of the mos signaling cascade involved in oocyte maturation. Variations of the current protocol to put forward translational defects are also proposed to emphasize its general applicability. In light of emerging evidence that aberrant protein synthesis may be involved in the pathogenesis of neurological disorders, such a model provides the opportunity to easily assess this impairment and identify new targets.


Assuntos
Modelos Animais , Oócitos/fisiologia , Biossíntese de Proteínas/fisiologia , Animais , Fator de Iniciação Eucariótico 4G/genética , Fator de Iniciação Eucariótico 4G/metabolismo , Feminino , Oócitos/metabolismo , Oogênese , Poli A/genética , Poli A/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , RNA Mensageiro/administração & dosagem , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Xenopus laevis/metabolismo
15.
J Cell Biochem ; 116(11): 2445-54, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25923058

RESUMO

Nitric Oxide (NO) has been involved in both intra- and extra-cellular signaling pathways in a wide range of organisms, and can be detected in some reproductive tissues. Based upon previous results reporting that NO-donor SNAP (s-nitroso-n-acetyl penicillamine) promoted the release from the metaphase II-anaphase II block in amphibian eggs, the aim of the present study was to assess the influence of SNAP on the activation of the molecular mechanisms triggering meiotic resumption of Xenopus oocytes, analogous to G2/M transition of the cell cycle. A high concentration of SNAP (2.5 mM) was found to inhibit the appearance of the white spot (meiotic resumption) and promoted alteration of spindle morphogenesis leading to atypical structures lacking bipolarity and correct chromosomes equatorial alignment. The medium acidification (pH = 4) promoted by SNAP specifically impacted the white spot occurrence. However, even when pH was restored to 7.4 in SNAP medium, observed spindles remained atypical (microtubule disorganization), suggesting SNAP impacted spindle assembly regardless of the pH. n-Acetyl-d,l-penicillamine disulfide, a degradation product of SNAP with the same molecular characteristics, albeit without release of NO, yielded spindle assemblies typical of metaphase II suggesting the specificity of NO action on meiotic spindle morphogenesis in Xenopus oocytes.


Assuntos
Doadores de Óxido Nítrico/farmacologia , Oócitos/efeitos dos fármacos , S-Nitroso-N-Acetilpenicilamina/farmacologia , Fuso Acromático/efeitos dos fármacos , Animais , Cromossomos/metabolismo , Feminino , Meiose/efeitos dos fármacos , Morfogênese/efeitos dos fármacos , Oócitos/citologia , Xenopus laevis
16.
FEBS J ; 281(19): 4519-34, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25132288

RESUMO

The regulation of Plasmodium falciparum protein phosphatase type 1 (PfPP1) activity remains to be deciphered. Data from homologous eukaryotic type 1 protein phosphatases (PP1) suggest that several protein regulators should be involved in this essential process. One such regulator, named PfI2 based on its primary sequence homology with eukaryotic inhibitor 2 (I2), was recently shown to be able to interact with PfPP1 and to inhibit its phosphatase activity, mainly through the canonical 'RVxF' binding motif. The details of the structural and functional characteristics of this interaction are investigated here. Using NMR spectroscopy, a second site of interaction is suggested to reside between residues D94 and T117 and contains the 'FxxR/KxR/K' binding motif present in other I2 proteins. This site seems to play in concert/synergy with the 'RVxF' motif to bind PP1, because only mutations in both motifs were able to abolish this interaction completely. However, regarding the structure/function relationship, mutation of either the 'RVxF' or 'FxxR/KxR/K' motif is more drastic, because each mutation prevents the capacity of PfI2 to trigger germinal vesicle breakdown in microinjected Xenopus oocytes. This indicates that the tight association of the PfI2 regulator to PP1, mediated by a two-site interaction, is necessary to exert its function. Based on these results, the use of a peptide derived from the 'FxxR/KxR/K' PfI2 motif was investigated for its potential effect on Plasmodium growth. This peptide, fused at its N-terminus to a penetrating sequence, was shown to accumulate specifically in infected erythrocytes and to have an antiplasmodial effect.


Assuntos
Antimaláricos/química , Plasmodium falciparum/enzimologia , Proteína Fosfatase 1/antagonistas & inibidores , Proteínas de Protozoários/antagonistas & inibidores , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Antimaláricos/metabolismo , Antimaláricos/farmacologia , Células Cultivadas , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Eritrócitos/parasitologia , Humanos , Dados de Sequência Molecular , Plasmodium falciparum/efeitos dos fármacos , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteína Fosfatase 1/química , Proteína Fosfatase 1/fisiologia , Proteínas de Protozoários/química , Proteínas de Protozoários/fisiologia , Xenopus laevis
17.
Mar Drugs ; 12(2): 779-98, 2014 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-24473175

RESUMO

Lamellarin D (LamD) is a marine alkaloid with broad spectrum antitumor activities. Multiple intracellular targets of LamD, which affect cancer cell growth and induce apoptosis, have been identified. These include nuclear topoisomerase I, relevant kinases (such as cyclin-dependent kinase 2) and the mitochondrial electron transport chain. While we have previously demonstrated that LamD at micromolar range deploys strong cytotoxicity by inducing mitochondrial apoptosis, mechanisms of its cytostatic effect have not yet been characterized. Here, we demonstrated that induction of cellular senescence (depicted by cell cycle arrest in G2 associated with ß-galactosidase activity) is a common response to subtoxic concentrations of LamD. Cellular senescence is observed in a large panel of cancer cells following in vitro or in vivo exposure to LamD. The onset of cellular senescence is dependent on the presence of intact topoisomerase I since topoisomerase I-mutated cells are resistant to senescence induced by LamD. LamD-induced senescence occurs without important loss of telomere integrity. Instead, incubation with LamD results in the production of intracellular reactive oxygen species (ROS), which are critical for senescence as demonstrated by the inhibitory effect of antioxidants. In addition, cancer cells lacking mitochondrial DNA also exhibit cellular senescence upon LamD exposure indicating that LamD can trigger senescence, unlike apoptosis, in the absence of functional mitochondria. Overall, our results identify senescence-associated growth arrest as a powerful effect of LamD and add compelling evidence for the pharmacological interest of lamellarins as potential anticancer agents.


Assuntos
Antineoplásicos/farmacologia , Senescência Celular/efeitos dos fármacos , Cumarínicos/farmacologia , DNA Topoisomerases Tipo I/efeitos dos fármacos , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Isoquinolinas/farmacologia , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , DNA Topoisomerases Tipo I/metabolismo , DNA Mitocondrial/metabolismo , Feminino , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Humanos , Camundongos SCID , Mitocôndrias/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Espécies Reativas de Oxigênio/metabolismo , Telômero/metabolismo , Inibidores da Topoisomerase/farmacologia
18.
BMC Biol ; 11: 80, 2013 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-23837822

RESUMO

BACKGROUND: It is clear that the coordinated and reciprocal actions of kinases and phosphatases are fundamental in the regulation of development and growth of the malaria parasite. Protein Phosphatase type 1 is a key enzyme playing diverse and essential roles in cell survival. Its dephosphorylation activity/specificity is governed by the interaction of its catalytic subunit (PP1c) with regulatory proteins. Among these, inhibitor-2 (I2) is one of the most evolutionarily ancient PP1 regulators. In vivo studies in various organisms revealed a defect in chromosome segregation and cell cycle progression when the function of I2 is blocked. RESULTS: In this report, we present evidence that Plasmodium falciparum, the causative agent of the most deadly form of malaria, expresses a structural homolog of mammalian I2, named PfI2. Biochemical, in vitro and in vivo studies revealed that PfI2 binds PP1 and inhibits its activity. We further showed that the motifs 12KTISW16 and 102HYNE105 are critical for PfI2 inhibitory activity. Functional studies using the Xenopus oocyte model revealed that PfI2 is able to overcome the G2/M cell cycle checkpoint by inducing germinal vesicle breakdown. Genetic manipulations in P. falciparum suggest an essential role of PfI2 as no viable mutants with a disrupted PfI2 gene were detectable. Additionally, peptides derived from PfI2 and competing with RVxF binding sites in PP1 exhibit anti-plasmodial activity against blood stage parasites in vitro. CONCLUSIONS: Taken together, our data suggest that the PfI2 protein could play a role in the regulation of the P. falciparum cell cycle through its PfPP1 phosphatase regulatory activity. Structure-activity studies of this regulator led to the identification of peptides with anti-plasmodial activity against blood stage parasites in vitro suggesting that PP1c-regulator interactions could be a novel means to control malaria.


Assuntos
Antimaláricos/farmacologia , Plasmodium falciparum/metabolismo , Proteína Fosfatase 1/antagonistas & inibidores , Proteínas/metabolismo , Proteínas de Protozoários/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Antimaláricos/uso terapêutico , Clonagem Molecular , Biologia Computacional , Fase G2/efeitos dos fármacos , Marcação de Genes , Humanos , Estágios do Ciclo de Vida/efeitos dos fármacos , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Camundongos , Mitose/efeitos dos fármacos , Dados de Sequência Molecular , Oócitos/citologia , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Parasitos/efeitos dos fármacos , Parasitos/enzimologia , Parasitos/crescimento & desenvolvimento , Peptídeos/química , Peptídeos/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/enzimologia , Plasmodium falciparum/crescimento & desenvolvimento , Ligação Proteica/efeitos dos fármacos , Mapeamento de Interação de Proteínas , Proteína Fosfatase 1/química , Proteína Fosfatase 1/metabolismo , Transporte Proteico/efeitos dos fármacos , Proteínas/química , Proteínas de Protozoários/química , Técnicas do Sistema de Duplo-Híbrido , Xenopus/metabolismo
19.
PLoS One ; 7(7): e41509, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22911804

RESUMO

Nitric oxide (NO) is identified as a signaling molecule involved in many cellular or physiological functions including meiotic maturation and parthenogenetic activation of mammalian oocytes. We observed that nitric oxide donor SNAP was potent to induce parthenogenetic activation in Xenopus eggs. NO-scavenger CPTIO impaired the effects of SNAP, providing evidence for the effects of the latter to be specific upon NO release. In Xenopus eggs, SNAP treatment induced pigment rearrangement, pronucleus formation and exocytosis of cortical granules. At a biochemical level, SNAP exposure lead to MAPK and Rsk inactivation within 30 minutes whereas MPF remained active, in contrast to calcium ionophore control where MPF activity dropped rapidly. MAPK inactivation could be correlated to pronuclear envelope reformation observed. In SNAP-treated eggs, a strong increase in intracellular calcium level was observed. NO effects were impaired in calcium-free or calcium limited medium, suggesting that that parthenogenetic activation of Xenopus oocytes with a NO donor was mainly calcium-dependent.


Assuntos
Doadores de Óxido Nítrico/farmacologia , Óvulo/citologia , S-Nitroso-N-Acetilpenicilamina/farmacocinética , Xenopus laevis/metabolismo , Animais , Benzoatos/farmacologia , Cálcio/metabolismo , Ativação Enzimática/efeitos dos fármacos , Feminino , Imidazóis/farmacologia , Cinética , Fator Promotor de Maturação/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Morfogênese/efeitos dos fármacos , Óxido Nítrico/metabolismo , Óvulo/efeitos dos fármacos , Óvulo/metabolismo , Partenogênese , Progesterona/farmacologia , Fuso Acromático/efeitos dos fármacos , Fuso Acromático/metabolismo
20.
Development ; 138(17): 3735-44, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21795279

RESUMO

In fully grown oocytes, meiosis is arrested at first prophase until species-specific initiation signals trigger maturation. Meiotic resumption universally involves early activation of M phase-promoting factor (Cdc2 kinase-Cyclin B complex, MPF) by dephosphorylation of the inhibitory Thr14/Tyr15 sites of Cdc2. However, underlying mechanisms vary. In Xenopus oocytes, deciphering the intervening chain of events has been hampered by a sensitive amplification loop involving Cdc2-Cyclin B, the inhibitory kinase Myt1 and the activating phosphatase Cdc25. In this study we provide evidence that the critical event in meiotic resumption is a change in the balance between inhibitory Myt1 activity and Cyclin B neosynthesis. First, we show that in fully grown oocytes Myt1 is essential for maintaining prophase I arrest. Second, we demonstrate that, upon upregulation of Cyclin B synthesis in response to progesterone, rapid inactivating phosphorylation of Myt1 occurs, mediated by Cdc2 and without any significant contribution of Mos/MAPK or Plx1. We propose a model in which the appearance of active MPF complexes following increased Cyclin B synthesis causes Myt1 inhibition, upstream of the MPF/Cdc25 amplification loop.


Assuntos
Ciclina B/metabolismo , Meiose/fisiologia , Oócitos/citologia , Oócitos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Proteínas de Xenopus/metabolismo , Animais , Western Blotting , Meiose/genética , Modelos Biológicos , Proteínas Serina-Treonina Quinases/genética , Proteínas Tirosina Quinases/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Xenopus , Proteínas de Xenopus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...