Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Strength Cond Res ; 32(10): 2888-2896, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29210954

RESUMO

DeMartini-Nolan, JK, Martschinske, JL, Casa, DJ, Lopez, RM, Stearns, RL, Ganio, MS, and Coris, E. Examining the influence of exercise intensity and hydration on gastrointestinal temperature in collegiate football players. J Strength Cond Res 32(10): 2888-2896, 2018-Debate exists regarding the influence of intensity and hydration on body temperature during American football. The purpose of this study was to observe body core temperature responses with changes in intensity and hydration. Twenty-nine male football players (age = 21 ± 1 year, height = 187 ± 9 cm, mass = 110.1 ± 23.5 kg, body mass index [BMI] = 31.3 ± 5.0, and body surface area [BSA] = 2.34 ± 0.27 m) participated in 8 days of practice in a warm environment (wet bulb globe temperature: 29.6 ± 1.6° C). Participants were identified as starters (S; n = 12) or nonstarters (n = 17) and linemen (L; n = 14) or nonlinemen (NL; n = 15). Variables of interest included core body temperature (T), hydration status, and physical performance characteristics as measured by a global positioning system. Intensity measures of average heart rate (138 ± 9 bpm), low-velocity movement (4.2 ± 1.7%), high-velocity movement (0.6 ± 0.6%), and average velocity (0.36 ± 0.10 m·s) accounted for 42% of the variability observed in T (38.32 ± 0.34° C, r = 0.65, p = 0.01). Hydration measures (percent body mass loss = -1.56 ± 0.80%, urine specific gravity [Usg] = 1.025 ± 0.006, and urine color [Ucol] = 6 ± 1) did not add to the prediction of T (p = 0.83). Metrics of exercise intensity accounted for 39% of the variability observed in maximum T (38.83 ± 0.42° C, r = 0.62, p = 0.02). Hydration measures did not add to this prediction (p = 0.40). Low-velocity movement, high-velocity movement, average velocity, BMI, and BSA were significantly different (p = 0.002, p < 0.001, p = 0.02, p < 0.001, p < 0.001, respectively) between L vs. NL. Heart rate and T were not different between L and NL (p > 0.05). Exercise intensity primarily accounted for the rise in core body temperature. Although L spent less time at higher velocities, T was similar to NL, suggesting that differences in BMI and BSA added to thermoregulatory strain.


Assuntos
Regulação da Temperatura Corporal , Temperatura Corporal , Futebol Americano/fisiologia , Estado de Hidratação do Organismo , Índice de Massa Corporal , Sistemas de Informação Geográfica , Frequência Cardíaca , Temperatura Alta , Humanos , Masculino , Universidades , Adulto Jovem
2.
J Strength Cond Res ; 25(11): 2935-43, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21904245

RESUMO

The purpose of this study was to evaluate physical demands of football players during preseason practices in the heat. Furthermore, we sought to compare how physical demands differ between positions and playing status. Male National Collegiate Athletic Association Division 1 football players (n = 49) participated in 9 practice sessions (142 ± 16 minutes per session; wet bulb globe temperature (WBGT) 28.75 ± 2.11°C) over 8 days. Heart rate (HR) and global positioning system data were recorded throughout the entirety of each practice to determine the distance covered (DC), velocity (V), maximal HR (HRmax), and average HR (HRavg). The subjects were divided into 2 groups: linemen (L) (N = 25; age: 22 ± 1 years, weight: 126 ± 16 kg, height: 190 ± 4 cm,) vs. nonlinemen (NL) (N = 24; age: 21 ± 1 years, weight: 91 ± 11 kg, height: 183 ± 8 cm) and starters (S) (N = 17; age: 21 ± 1 years, weight: 118 ± 21 kg, height: 190 ± 7 cm) vs. nonstarters (NS) (N = 32; age: 20 ± 1 years, weight: 105 ± 22 kg, height: 185 ± 7 cm) for statistical analysis. The DC (3,532 ± 943 vs. 2,573 ± 489 m; p = 0.001) and HRmax (201 ± 9 vs. 194 ± 11 b·min(-1); p = 0.025) were significantly greater in NL compared with that in L. In addition, NL spent more time (p < 0.0001) and covered more distance (p = 0.002) at higher velocities than L did. Differences between S vs. NS were observed (p = 0.008, p = 0.031), with S obtaining higher velocities than NS did. Given the demands of their playing positions, NL were required to cover more distance at higher velocities, resulting in a greater HRmax than that of L. Therefore, it appears that L engage in more isometric work than NL do. In addition, the players exposed to similar practice demands provide similar work output during preseason practice sessions regardless of their playing status.


Assuntos
Futebol Americano/fisiologia , Temperatura Alta , Atletas , Desempenho Atlético/fisiologia , Temperatura Corporal/fisiologia , Frequência Cardíaca/fisiologia , Humanos , Masculino , Corrida/fisiologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...