Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22269871

RESUMO

The efforts to contain SARS-CoV-2 and reduce the impact of COVID-19 have been supported by Test, Trace and Isolate (TTI) systems in many settings, including the United Kingdom. The mathematical models underlying policy decisions about TTI make assumptions about behaviour in the context of a rapidly unfolding and changeable emergency. This study investigates the reported behaviours of UK citizens in July 2021, assesses them against how a set of TTI processes are conceptualised and represented in models and then interprets the findings with modellers who have been contributing evidence to TTI policy. We report on testing practices, including the uses of and trust in different types of testing, and the challenges of testing and isolating faced by different demographic groups. The study demonstrates the potential of input from members of the public to benefit the modelling process, from guiding the choice of research questions, influencing choice of model structure, informing parameter ranges and validating or challenging assumptions, to highlighting where model assumptions are reasonable or where their poor reflection of practice might lead to uninformative results. We conclude that deeper engagement with members of the public should be integrated at regular stages of public health intervention modelling.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21250992

RESUMO

We explore strategies of contact tracing, case isolation and quarantine of exposed contacts to control the SARS-CoV-2 epidemic using a branching process model with household structure. This structure reflects higher transmission risks among household members than among non-household members, and is also the level at which physical distancing policies have been applied. We explore implementation choices that make use of household structure, and investigate strategies including two-step tracing, backwards tracing, smartphone tracing and tracing upon symptom report rather than test results. The primary model outcome is the effect on the growth rate of the epidemic under contact tracing in combination with different levels of physical distancing, and we investigate epidemic extinction times to indicate the time period over which interventions must be sustained. We consider effects of non-uptake of isolation/quarantine, non-adherence, and declining recall of contacts over time. We find that compared to self-isolation of cases but no contact tracing, a household-based contact tracing strategy allows for some relaxation of physical distancing measures; however, it is unable to completely control the epidemic in the absence of other measures. Even assuming no imported cases and sustainment of moderate distancing, testing and tracing efforts, the time to bring the epidemic to extinction could be in the order of months to years.

3.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20059972

RESUMO

The unconstrained growth rate of COVID-19 is crucial for measuring the impact of interventions, assessing worst-case scenarios, and calibrating mathematical models for policy planning. However, robust estimates are limited, with scientific focus on the time-insensitive basic reproduction number R0. Using multiple countries, data streams and methods, we consistently estimate that European COVID-19 cases doubled every three days when unconstrained, with the impact of physical distancing interventions typically seen about nine days after implementation, during which time cases grew eight-fold. The combination of fast growth and long detection delays explains the struggle in countries response better than large values of R0 alone, and warns against relaxing physical distancing measures too quickly. Testing and tracing are fundamental in shortening such delays, thus preventing cases from escalating unnoticed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...