Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Langmuir ; 35(9): 3513-3523, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30673275

RESUMO

In this work, we report a drug delivery system based on the pH-responsive self-assembly and -disassembly behaviors of peptides. Here, a systematically designed histidine-rich lipidated peptide (NP1) is presented to encapsulate and deliver an anticancer drug ellipticine (EPT) into two model cells: non-small-cell lung carcinoma and Chinese hamster ovary cells. The mechanism of pH-responsive peptide self-assembly and -disassembly involved in the drug encapsulation and release process are extensively investigated. We found that NP1 could self-assemble as a spherical nanocomplex (diameter = 34.43 nm) in a neutral pH environment with EPT encapsulated and positively charged arginine amino acids aligned outward and EPT is released in an acidic environment due to the pH-triggered disassembly. Furthermore, the EPT-encapsulating peptide could achieve a mass loading ability of 18% (mass of loaded-EPT/mass of NP1) with optimization. More importantly, it is revealed that the positively charged arginine on the periphery of the NP1 peptides could greatly facilitate their direct translocation through the negatively charged plasma membrane via electrostatic interaction, instead of via endocytosis, which provides a more efficient uptake pathway.


Assuntos
Antineoplásicos/farmacologia , Peptídeos Penetradores de Células/química , Portadores de Fármacos/química , Elipticinas/farmacologia , Lipopeptídeos/química , Células A549 , Sequência de Aminoácidos , Animais , Células CHO , Sobrevivência Celular/efeitos dos fármacos , Peptídeos Penetradores de Células/toxicidade , Cricetulus , Portadores de Fármacos/toxicidade , Liberação Controlada de Fármacos , Histidina/química , Humanos , Concentração de Íons de Hidrogênio , Lipopeptídeos/toxicidade , Nanoestruturas/química , Nanoestruturas/toxicidade
3.
Cell Signal ; 28(1): 43-52, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26483157

RESUMO

Rho GTPases are integral to the regulation of actin cytoskeleton-dependent processes, including mitosis. Rho and leukemia-associated Rho guanine-nucleotide exchange factor (LARG), also known as ARHGEF12, are involved in mitosis as well as diseases such as cancer and heart disease. Since LARG has a role in mitosis and diverse signaling functions beyond mitosis, it is important to understand the regulation of the protein through modifications such as phosphorylation. Here we report that LARG undergoes a mitotic-dependent and cyclin-dependent kinase 1 (Cdk1) inhibitor-sensitive phosphorylation. Additionally, LARG is phosphorylated at the onset of mitosis and dephosphorylated as cells exit mitosis, concomitant with Cdk1 activity. Furthermore, using an in vitro kinase assay, we show that LARG can be directly phosphorylated by Cdk1. Through expression of phosphonull mutants that contain non-phosphorylatable alanine mutations at potential Cdk1 S/TP sites, we demonstrate that LARG phosphorylation occurs in both termini. Using phosphospecific antibodies, we confirm that two sites, serine 190 and serine 1176, are phosphorylated during mitosis in a Cdk1-dependent manner. In addition, these phosphospecific antibodies show phosphorylated LARG at specific mitotic locations, namely the mitotic organizing centers and flanking the midbody. Lastly, RhoA activity assays reveal that phosphonull LARG is more active in cells than phosphomimetic LARG. Our data thus identifies LARG as a phosphoregulated RhoGEF during mitosis.


Assuntos
Proteína Quinase CDC2/metabolismo , Leucemia/metabolismo , Mitose/fisiologia , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Citoesqueleto de Actina/metabolismo , Células HeLa , Humanos , Fosforilação , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Proteínas rho de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo
4.
Nat Commun ; 6: 10156, 2015 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-26658454

RESUMO

Despite the discovery of heterotrimeric αßγ G proteins ∼25 years ago, their selective perturbation by cell-permeable inhibitors remains a fundamental challenge. Here we report that the plant-derived depsipeptide FR900359 (FR) is ideally suited to this task. Using a multifaceted approach we systematically characterize FR as a selective inhibitor of Gq/11/14 over all other mammalian Gα isoforms and elaborate its molecular mechanism of action. We also use FR to investigate whether inhibition of Gq proteins is an effective post-receptor strategy to target oncogenic signalling, using melanoma as a model system. FR suppresses many of the hallmark features that are central to the malignancy of melanoma cells, thereby providing new opportunities for therapeutic intervention. Just as pertussis toxin is used extensively to probe and inhibit the signalling of Gi/o proteins, we anticipate that FR will at least be its equivalent for investigating the biological relevance of Gq.


Assuntos
Depsipeptídeos/farmacologia , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Animais , Ardisia/química , Linhagem Celular Tumoral , Depsipeptídeos/química , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Humanos , Melanoma/metabolismo , Camundongos , Modelos Moleculares , Estrutura Molecular , Conformação Proteica , Isoformas de Proteínas , Transdução de Sinais , Cauda/irrigação sanguínea , Vasoconstrição/efeitos dos fármacos
5.
Mol Biol Cell ; 24(18): 2785-94, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23885121

RESUMO

Proper completion of mitosis requires the concerted effort of multiple RhoGEFs. Here we show that leukemia-associated RhoGEF (LARG), a RhoA-specific RGS-RhoGEF, is required for abscission, the final stage of cytokinesis, in which the intercellular membrane is cleaved between daughter cells. LARG colocalizes with α-tubulin at the spindle poles before localizing to the central spindle. During cytokinesis, LARG is condensed in the midbody, where it colocalizes with RhoA. HeLa cells depleted of LARG display apoptosis during cytokinesis with unresolved intercellular bridges, and rescue experiments show that expression of small interfering RNA-resistant LARG prevents this apoptosis. Moreover, live cell imaging of LARG-depleted cells reveals greatly delayed fission kinetics in abscission in which a population of cells with persistent bridges undergoes apoptosis; however, the delayed fission kinetics is rescued by Aurora-B inhibition. The formation of a Flemming body and thinning of microtubules in the intercellular bridge of cells depleted of LARG is consistent with a defect in late cytokinesis, just before the abscission event. In contrast to studies of other RhoGEFs, particularly Ect2 and GEF-H1, LARG depletion does not result in cytokinetic furrow regression nor does it affect internal mitotic timing. These results show that LARG is a novel and temporally distinct RhoGEF required for completion of abscission.


Assuntos
Citocinese , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Apoptose , Aurora Quinase B/metabolismo , Células HeLa , Humanos , Cinética , Mitose , Mutação/genética , Ligação Proteica , RNA Interferente Pequeno/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/química , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Relação Estrutura-Atividade , Tirosina/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo
6.
J Biol Chem ; 281(38): 28105-12, 2006 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-16864580

RESUMO

Tryptophan hydroxylase (TPH) is the rate-limiting enzyme in serotonin biosynthesis. A novel gene, termed TPH2, has recently been described. This gene is preferentially expressed in the central nervous system, while the original TPH1 is the peripheral gene. We have expressed human tryptophan hydroxylase 2 (hTPH2) and two deletion mutants (NDelta150 and NDelta150/CDelta24) using isopropyl beta-D-thiogalactopyranoside-free autoinduction in Escherichia coli. This expression system produced active wild type TPH2 with relatively low solubility. The solubility was increased for mutants lacking the NH(2)-terminal regulatory domain. The solubility of hTPH2, NDelta150, and NDelta150/CDelta24 are 6.9, 62, and 97.5%, respectively. Removal of the regulatory domain also produced a more than 6-fold increase in enzyme stability (t((1/2)) at 37 degrees C). The wild type hTPH2, like other members of the aromatic amino acid hydroxylase superfamily, exists as a homotetramer (236 kDa on size exclusion chromatography). Similarly, NDelta150 also migrates as a tetramer (168 kDa). In contrast, removal of the NH(2)-terminal domain and the COOH-terminal, putative leucine zipper tetramerization domain produces monomeric enzyme (39 kDa). Interestingly, removal of the NH(2)-terminal regulatory domain did not affect the Michaelis constants for either substrate but did increase V(max) values. These data identify the NH(2)-terminal regulatory domain as the source of hTPH2 instability and reduced solubility.


Assuntos
Triptofano Hidroxilase/química , Indução Enzimática , Estabilidade Enzimática , Humanos , Cinética , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Solubilidade , Triptofano Hidroxilase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...