Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 23214, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34853367

RESUMO

There is increasing evidence that honeybees (Apis mellifera L.) can adapt naturally to survive Varroa destructor, the primary cause of colony mortality world-wide. Most of the adaptive traits of naturally varroa-surviving honeybees concern varroa reproduction. Here we investigate whether factors in the honeybee metagenome also contribute to this survival. The quantitative and qualitative composition of the bacterial and viral metagenome fluctuated greatly during the active season, but with little overall difference between varroa-surviving and varroa-susceptible colonies. The main exceptions were Bartonella apis and sacbrood virus, particularly during early spring and autumn. Bombella apis was also strongly associated with early and late season, though equally for all colonies. All three affect colony protein management and metabolism. Lake Sinai virus was more abundant in varroa-surviving colonies during the summer. Lake Sinai virus and deformed wing virus also showed a tendency towards seasonal genetic change, but without any distinction between varroa-surviving and varroa-susceptible colonies. Whether the changes in these taxa contribute to survival or reflect demographic differences between the colonies (or both) remains unclear.


Assuntos
Abelhas/genética , Abelhas/parasitologia , Metagenoma , Varroidae/fisiologia , Animais , Abelhas/microbiologia , Abelhas/virologia , Genoma Bacteriano , Genoma de Inseto , Genoma Viral , Vírus de RNA/genética , Vírus de RNA/isolamento & purificação , Suécia
2.
Sci Total Environ ; 766: 142597, 2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-33077205

RESUMO

Nitrogen (N) fertilization is a routine practice in boreal forests but its effects on fungal functional guilds in Pinus sylvestris forests are still incompletely understood. Sampling is often restricted to the upper organic horizons and based on DNA extracted from mixtures of soil and roots without explicitly analysing different spatial niches. Fungal community structure in soil and roots of an 85-y-old Pinus sylvestris forest was investigated using high throughput sequencing. Fertilized plots had been treated with a single dose of N fertilizer, 15 months prior to sampling. Species richness of fungi colonizing roots was reduced in all horizons by N fertilization. In contrast, species richness of soil fungi in the organic horizon was increased by N fertilization, but unaffected in the mineral horizons. Community composition of fungi colonizing roots differed from that of soil fungi, and both communities were significantly influenced by soil horizon and N. The ectomycorrhizal community composition in both roots and soil was significantly affected by N fertilization but no significant effect was found on saprotrophic fungi. The results highlight the importance of analysing the rhizosphere soil and root compartments separately since the fungal communities in these two niches appear to respond differently to environmental perturbations involving the addition of nitrogen.


Assuntos
Micorrizas , Rizosfera , Fertilização , Fungos , Raízes de Plantas , Solo , Microbiologia do Solo , Taiga
3.
Environ Microbiol ; 19(11): 4736-4753, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28967195

RESUMO

Plant roots select non-random communities of fungi and bacteria from the surrounding soil that have effects on their health and growth, but we know little about the factors influencing their composition. We profiled bacterial microbiomes associated with individual ectomycorrhizal Pinus sylvestris roots colonized by different fungi and analyzed differences in microbiome structure related to soils from distinct podzol horizons and effects of short-term additions of N, a growth-limiting nutrient commonly applied as a fertilizer, but known to influence patterns of carbon allocation to roots. Ectomycorrhizal roots growing in soil from different horizons harboured distinct bacterial communities. The fungi colonizing individual roots had a strong effect on the associated bacterial communities. Even closely related species within the same ectomycorrhizal genus had distinct bacterial microbiomes in unfertilized soil, but fertilization removed this specificity. Effects of N were rapid and context dependent, being influenced by both soil type and the particular ectomycorrhizal fungi involved. Fungal community composition changed in soil from all horizons, but bacteria only responded strongly to N in soil from the B horizon where community structure was different and bacterial diversity was significantly reduced, possibly reflecting changed carbon allocation patterns.


Assuntos
Bactérias/crescimento & desenvolvimento , Fungos/crescimento & desenvolvimento , Micorrizas/crescimento & desenvolvimento , Pinus sylvestris/microbiologia , Bactérias/classificação , Carbono/metabolismo , Fungos/classificação , Microbiota , Nitrogênio/metabolismo , Raízes de Plantas/microbiologia , Solo/química , Microbiologia do Solo
4.
Environ Microbiol ; 18(5): 1470-83, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26521936

RESUMO

Symbiotic ectomycorrhizal tree roots represent an important niche for interaction with bacteria since the fungi colonizing them have a large surface area and receive a direct supply of photosynthetically derived carbon. We examined individual root tips of Pinus sylvestris at defined time points between 5 days and 24 weeks, identified the dominant fungi colonizing each root tip using Sanger sequencing and the bacterial communities colonizing individual root tips by 454 pyrosequencing. Bacterial colonization was extremely dynamic with statistically significant variation in time and increasing species richness until week 16 (3477 operational taxonomic units). Bacterial community structure of roots colonized by Russula sp. 6 GJ-2013b, Piloderma spp., Meliniomyces variabilis and Paxillus involutus differed significantly at weeks 8 and 16 but diversity declined and significant differences were no longer apparent at week 24. The most common genera were Burkholderia, Sphingopyxsis, Dyella, Pseudomonas, Acinetobacter, Actinospica, Aquaspirillum, Acidobacter Gp1, Sphingomonas, Terriglobus, Enhydrobacter, Herbaspirillum and Bradyrhizobium. Many genera had high initial abundance at week 8, declining with time but Dyella and Terriglobus increased in abundance at later time points. In roots colonized by Piloderma spp. several other bacterial genera, such as Actinospica, Bradyrhizobium, Acidobacter Gp1 and Rhizomicrobium appeared to increase in abundance at later sampling points.


Assuntos
Bactérias/classificação , Fungos/classificação , Micorrizas/classificação , Pinus sylvestris/microbiologia , Raízes de Plantas/microbiologia , Microbiota
5.
Biochem J ; 418(3): 541-51, 2009 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-19032149

RESUMO

The chaperone/usher pathway controls assembly of fibres of adhesive organelles of Gram-negative bacteria. The final steps of fibre assembly and fibre translocation to the cell surface are co-ordinated by the outer membrane proteins, ushers. Ushers consist of several soluble periplasmic domains and a single transmembrane beta-barrel. Here we report isolation and structural/functional characterization of a novel middle domain of the Caf1A usher from Yersinia pestis. The isolated UMD (usher middle domain) is a highly soluble monomeric protein capable of autonomous folding. A 2.8 A (1 A=0.1 nm) resolution crystal structure of UMD revealed that this domain has an immunoglobulin-like fold similar to that of donor-strand-complemented Caf1 fibre subunit. Moreover, these proteins displayed significant structural similarity. Although UMD is in the middle of the predicted amphipathic beta-barrel of Caf1A, the usher still assembled in the membrane in the absence of this domain. UMD did not bind Caf1M-Caf1 complexes, but its presence was shown to be essential for Caf1 fibre secretion. The study suggests that UMD may play the role of a subunit-substituting protein (dummy subunit), plugging or priming secretion through the channel in the Caf1A usher. Comparison of isolated UMD with the recent structure of the corresponding domain of PapC usher revealed high similarity of the core structures, suggesting a universal structural adaptation of FGL (F(1)G(1) long) and FGS (F(1)G(1) short) chaperone/usher pathways for the secretion of different types of fibres. The functional role of two topologically different states of this plug domain suggested by structural and biochemical results is discussed.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Chaperonas Moleculares/química , Sequência de Aminoácidos , Cristalização , Cristalografia por Raios X , Chaperonas Moleculares/metabolismo , Dados de Sequência Molecular , Fragmentos de Peptídeos/química , Conformação Proteica , Estrutura Terciária de Proteína , Yersinia pestis/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...