Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 14(8)2021 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-33920143

RESUMO

Evaluating the performance of reinforced concrete (RC) structures during earthquakes and the resultant damage in the structures depends on an accurate load-displacement relationship. Several experimental and analytical evaluation methods for load-displacement relationships have been proposed and specified in current design standards. However, there have been few quantitative studies on the impact of drying on the yielding behavior of RC members, including evaluations of the effective stiffness of members. In this study, to investigate changes in the mechanical properties of RC beam-slab members due to drying of the concrete, cyclic loading tests are conducted on two RC beam-slab members with and without drying. It is found that the lateral structural stiffness of the specimen with drying decreased to 77% that of the specimen without drying. This is verified in the calculation of the flexural stiffness. In this calculation, it is assumed that drying shrinkage decreases the moment of inertia of the slab in tension but not in compression. Meanwhile, no difference is observed in the flexural capacity and yield displacement between the two specimens. Thus, there is no significant impact from drying shrinkage in RC beam-slab members on the lateral structural performance, while the shrinkage instead induces greater flexural cracking, which reduces the residual stresses in the specimen with drift leading to a gradual decrease in the impact of drying.

2.
Sci Rep ; 5: 14123, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26369805

RESUMO

Carbonate concretions occur in sedimentary rocks of widely varying geological ages throughout the world. Many of these concretions are isolated spheres, centered on fossils. The formation of such concretions has been variously explained by diffusion of inorganic carbon and organic matter in buried marine sediments. However, details of the syn-depositional chemical processes by which the isolated spherical shape developed and the associated carbon sources are little known. Here we present evidence that spherical carbonate concretions (diameters φ : 14 ~ 37 mm) around tusk-shells (Fissidentalium spp.) were formed within weeks or months following death of the organism by the seepage of fatty acid from decaying soft body tissues. Characteristic concentrations of carbonate around the mouth of a tusk-shell reveal very rapid formation during the decay of organic matter from the tusk-shell. Available observations and geochemical evidence have enabled us to construct a 'Diffusion-growth rate cross-plot' that can be used to estimate the growth rate of all kinds of isolated spherical carbonate concretions identified in marine formations. Results shown here suggest that isolated spherical concretions that are not associated with fossils might also be formed from carbon sourced in the decaying soft body tissues of non-skeletal organisms with otherwise low preservation potential.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...